Universal deformation formulas and braided module algebras

被引:6
作者
Guccione, Jorge A. [1 ]
Guccione, Juan J. [1 ]
Valqui, Christian [2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] PUCP, Inst Matemat & Ciencias Afines, Secc Matemat, Lima 32, Peru
关键词
Crossed product; Deformation; Hochschild cohomology; HOPF-ALGEBRAS; TENSOR CATEGORIES; CROSSED-PRODUCTS;
D O I
10.1016/j.jalgebra.2010.12.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study formal deformations of a crossed product S(V)#(f) G, of a polynomial algebra with a group, induced from a universal deformation formula introduced by Witherspoon. These deformations arise from braided actions of Hopf algebras generated by automorphisms and skew derivations. We show that they are non-trivial in the characteristic free context, even if G is infinite, by showing that their infinitesimals are not coboundaries. For this we construct a new complex which computes the Hochschild cohomology of S(V)# (f) G. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:263 / 297
页数:35
相关论文
共 11 条
[1]   Hopf algebras of order p2 and braided Hopf algebras of order p [J].
Andruskiewitsch, N ;
Schneider, HJ .
JOURNAL OF ALGEBRA, 1998, 199 (02) :430-454
[2]   Integrals for braided Hopf algebras [J].
Bespalov, Y ;
Kerler, T ;
Lyubashenko, V ;
Turaev, V .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 148 (02) :113-164
[3]   Hopf modules in Yetter-Drinfeld categories [J].
Doi, Y .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (09) :3057-3070
[4]  
FISHMAN D, 1997, T AM MATH SOC, V349, P4857
[5]   Bialgebra actions, twists, and universal deformation formulas [J].
Giaquinto, A ;
Zhang, JJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 128 (02) :133-151
[6]   Theory of braided Hopf crossed products [J].
Guccione, JA ;
Guccione, JJ .
JOURNAL OF ALGEBRA, 2003, 261 (01) :54-101
[7]  
JORGE A, 2002, K-THEORY, V25, P138
[8]   MODULAR TRANSFORMATIONS FOR TENSOR CATEGORIES [J].
LYUBASHENKO, V .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 98 (03) :279-327
[9]   Finite Hopf algebras in braided tensor categories [J].
Takeuchi, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 138 (01) :59-82
[10]  
Takeuchi M., 2000, CONT MATH, V267, P301