Some Gruss type inequalities and corrected three-point quadrature formulae of Euler type

被引:3
作者
Bakula, Milica Klaricic [1 ]
Pecaric, Josip [2 ]
Penava, Mihaela Ribicic [3 ]
Vukelic, Ana [4 ]
机构
[1] Univ Split, Fac Sci, Split 21000, Croatia
[2] Univ Zagreb, Fac Text Technol, Zagreb 10000, Croatia
[3] Univ Osijek, Dept Math, Osijek 31000, Croatia
[4] Univ Zagreb, Fac Food Technol & Biotechnol, Zagreb 10000, Croatia
关键词
Chebyshev functional; Gruss inequality; corrected three-point quadrature formulae; corrected Euler Bullen-Simpson formula;
D O I
10.1186/s13660-015-0603-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain some new Gruss type inequalities for the general corrected three-point quadrature formulae of Euler type. As special cases, we derive some new bounds for the corrected Euler Simpson formula, the corrected dual Euler Simpson formula and the corrected Euler Maclaurin formula. Also, applications for the corrected Euler Bullen-Simpson formula are considered.
引用
收藏
页数:14
相关论文
共 16 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS, V55
[2]  
Aljinovic A.A., 2013, GEN INTEGRAL IDENTIT
[3]  
[Anonymous], ANZIAM J
[4]  
[Anonymous], 2003, J INEQUAL PURE APPL
[5]  
Bullen PS, 1978, PUBL ELEKTROTEH FAK, V602-633, P97
[6]   SOME NEW OSTROWSKI-TYPE BOUNDS FOR THE CEBYSEV FUNCTIONAL AND APPLICATIONS [J].
Cerone, P. ;
Dragomir, S. S. .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (01) :159-170
[7]   Some inequalities of Euler-Gruss type [J].
Dedic, L ;
Matic, M ;
Pecaric, J .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (7-8) :843-856
[8]   Quadrature formulae of Gauss type based on Euler identities [J].
Franjic, I. ;
Peric, I. ;
Pecaric, J. .
MATHEMATICAL AND COMPUTER MODELLING, 2007, 45 (3-4) :355-370
[9]  
Franjic I, 2006, B ALLAHABAD MATH SOC, V21, P105
[10]  
Franjic I., 2011, Euler Integral Identity, Quadrature Formulae and Error Estimations