Hyers-Ulam stability of linear differential operator with constant coefficients

被引:101
作者
Miura, T [1 ]
Miyajima, S
Takahasi, SE
机构
[1] Yamagata Univ, Dept Basic Technol Appl Math & Phys, Yonezawa, Yamagata 9928510, Japan
[2] Sci Univ Tokyo, Fac Sci, Dept Math, Shinjuku Ku, Tokyo 1628601, Japan
关键词
Hyers-Ulam stability; n-th order linear differential operator; exponential functions;
D O I
10.1002/mana.200310088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P(z) be a polynomial of degree n with complex coefficients and consider the n-th order linear differential operator P(D). We show that the equation _P(D)f = 0 has the Hyers-Ulam stability, if and only if the equation P(z) = 0 has no pure imaginary solution. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:90 / 96
页数:7
相关论文
共 9 条
[1]   On some inequalities and stability results related to the exponential function [J].
Alsina, C ;
Ger, R .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1998, 2 (04) :373-380
[2]  
[Anonymous], 1964, PROBLEMS MODERN MATH
[3]  
Gajda Z, 1991, INT J MATH MATH SCI, V14, P431, DOI [DOI 10.1155/S016117129100056X, 10.1155/S016117129100056X]
[4]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[5]  
Inoue J., 2000, ACTA SCI MATH SZEGED, V66, P257
[6]   STABILITY OF LINEAR MAPPING IN BANACH-SPACES [J].
RASSIAS, TM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (02) :297-280
[7]  
TAKAGI H, IN PRESS ESSENTIAL N
[8]  
Takahasi Sin-Ei, 2002, [Bulletin of the KMS, 대한수학회보], V39, P309
[9]  
ULAM SM, 1974, SETS NUMBERS U SEL 3