A hybridization of the Polak-RibiSre-Polyak and Fletcher-Reeves conjugate gradient methods

被引:17
作者
Babaie-Kafaki, Saman [1 ]
Ghanbari, Reza [2 ]
机构
[1] Semnan Univ, Dept Math, Fac Math Stat & Comp Sci, Semnan, Iran
[2] Ferdowsi Univ Mashhad, Fac Math Sci, Mashhad, Iran
关键词
Unconstrained optimization; Large-scale optimization; Conjugate gradient method; Global convergence; SUFFICIENT DESCENT PROPERTY; GLOBAL CONVERGENCE; ALGORITHM; MINIMIZATION;
D O I
10.1007/s11075-014-9856-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to achieve a theoretically effective and numerically efficient method for solving large-scale unconstrained optimization problems, a hybridization of the Fletcher-Reeves and Polak-RibiSre-Polyak conjugate gradient methods is proposed. In the method, the hybridization parameter is computed such that the generated search directions approach to the search directions of the efficient three-term conjugate gradient method proposed by Zhang et al., to the extent possible. Under proper conditions, global convergence of the method is established without convexity assumption on the objective function. The method is numerically compared with the three-term conjugate gradient method proposed by Zhang et al. and a modified version of the Polak-RibiSre-Polyak method suggested by Gilbert and Nocedal. Comparative testing results demonstrating the efficiency of the proposed method are reported.
引用
收藏
页码:481 / 495
页数:15
相关论文
共 50 条
[41]   A modified Polak-Ribiere-Polyak conjugate gradient algorithm for nonsmooth convex programs [J].
Yuan, Gonglin ;
Wei, Zengxin ;
Li, Guoyin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :86-96
[42]   A modified Polak-Ribière-Polyak type conjugate gradient method for vector optimization [J].
Hu, Qingjie ;
Zhang, Yanyan ;
Li, Ruyun ;
Zhu, Zhibin .
OPTIMIZATION METHODS & SOFTWARE, 2025,
[43]   A modified descent Polak–Ribiére–Polyak conjugate gradient method with global convergence property for nonconvex functions [J].
Zohre Aminifard ;
Saman Babaie-Kafaki .
Calcolo, 2019, 56
[44]   A Modified Sufficient Descent Polak-Ribiere-Polyak Type Conjugate Gradient Method for Unconstrained Optimization Problems [J].
Zheng, Xiuyun ;
Shi, Jiarong .
ALGORITHMS, 2018, 11 (09)
[45]   Extension of Modified Polak-Ribiere-Polyak Conjugate Gradient Method to Linear Equality Constraints Minimization Problems [J].
Dai, Zhifeng .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[46]   A modified nonlinear Polak-Ribiere-Polyak conjugate gradient method with sufficient descent property [J].
Dong, Xiaoliang .
CALCOLO, 2020, 57 (03)
[47]   New Hybrid Conjugate Gradient and Broyden-Fletcher-Goldfarb-Shanno Conjugate Gradient Methods [J].
Stanimirovic, Predrag S. ;
Ivanov, Branislav ;
Djordjevic, Snezana ;
Brajevic, Ivona .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (03) :860-884
[48]   Spectral modified Polak-Ribiere-Polyak projection conjugate gradient method for solving monotone systems of nonlinear equations [J].
Awwal, Aliyu Muhammed ;
Kumam, Poom ;
Abubakar, Auwal Bala .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 362
[49]   RIEMANNIAN MODIFIED POLAK-RIBIERE-POLYAK CONJUGATE GRADIENT ORDER REDUCED MODEL BY TENSOR TECHNIQUES [J].
Jiang, Yao-Lin ;
Xu, Kang-Li .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (02) :432-463
[50]   AN EIGENVALUE STUDY ON THE SUFFICIENT DESCENT PROPERTY OF A MODIFIED POLAK-RIBIERE-POLYAK CONJUGATE GRADIENT METHOD [J].
Kafaki, S. Babaie .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (01) :235-242