Decoupling Electrochemical Reaction and Diffusion Processes in Ionically-Conductive Solids on the Nanometer Scale

被引:91
作者
Balke, Nina [1 ]
Jesse, Stephen [1 ]
Kim, Yoongu [2 ]
Adamczyk, Leslie [2 ]
Ivanov, Ilia N. [1 ]
Dudney, Nancy J. [2 ]
Kalinin, Sergei V. [1 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
关键词
scanning probe microscopy; Li-ion batteries; solid state ionics; DOPED CERIUM OXIDE; CHEMICAL EXPANSION; FORCE MICROSCOPY; MECHANISMS; FERROELECTRICS; FUNCTIONALITY; RESOLUTION; SURFACES; BATTERY; TRENDS;
D O I
10.1021/nn101502x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have developed a scanning probe microscopy approach to explore voltage-controlled ion dynamics in ionically conductive solids and decouple transport and local electrochemical reactivity on the nanometer scale. Electrochemical strain microscopy allows detection of bias-induced ionic motion through the dynamic (0.1-1 MHz) local strain. Spectroscopic modes based on low-frequency (similar to 1 Hz) voltage sweeps allow local ion dynamics to be probed locally. The bias dependence of the hysteretic strain response accessed through first-order reversal curve (FORC) measurements demonstrates that the process is activated at a certain critical voltage and is linear above this voltage everywhere on the surface. This suggests that FORC spectroscopic ESM data separates local electrochemical reaction and transport processes. The relevant parameters such as critical voltage and effective mobility can be extracted for each location and correlated with the microstructure. The evolution of these behaviors with the charging of the amorphous Si anode in a thin-film Li-ion battery is explored. A broad applicability of this method to other ionically conductive systems is predicted.
引用
收藏
页码:7349 / 7357
页数:9
相关论文
共 56 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]   Mechanisms and rate laws for oxygen exchange on mixed-conducting oxide surfaces [J].
Adler, S. B. ;
Chen, X. Y. ;
Wilson, J. R. .
JOURNAL OF CATALYSIS, 2007, 245 (01) :91-109
[3]   Factors governing oxygen reduction in solid oxide fuel cell cathodes [J].
Adler, SB .
CHEMICAL REVIEWS, 2004, 104 (10) :4791-4843
[4]  
Adler SB, 2001, J AM CERAM SOC, V84, P2117, DOI 10.1111/j.1151-2916.2001.tb00968.x
[5]  
[Anonymous], 2002, Principal components analysis
[6]   Nanoscale mapping of ion diffusion in a lithium-ion battery cathode [J].
Balke, N. ;
Jesse, S. ;
Morozovska, A. N. ;
Eliseev, E. ;
Chung, D. W. ;
Kim, Y. ;
Adamczyk, L. ;
Garcia, R. E. ;
Dudney, N. ;
Kalinin, S. V. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :749-754
[7]   Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution [J].
Balke, Nina ;
Jesse, Stephen ;
Kim, Yoongu ;
Adamczyk, Leslie ;
Tselev, Alexander ;
Ivanov, Ilia N. ;
Dudney, Nancy J. ;
Kalinin, Sergei V. .
NANO LETTERS, 2010, 10 (09) :3420-3425
[8]  
Bard AJ., 2008, ELECTROCHEMICAL METH
[9]   Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide [J].
Bishop, S. R. ;
Duncan, K. L. ;
Wachsman, E. D. .
ACTA MATERIALIA, 2009, 57 (12) :3596-3605
[10]   Defect equilibria and chemical expansion in non-stoichiometric undoped and gadolinium-doped cerium oxide [J].
Bishop, S. R. ;
Duncan, K. L. ;
Wachsman, E. D. .
ELECTROCHIMICA ACTA, 2009, 54 (05) :1436-1443