Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge

被引:74
作者
Isgum, Ivana [1 ]
Benders, Manon J. N. L. [2 ]
Avants, Brian [3 ]
Cardoso, M. Jorge [4 ]
Counsell, Serena J. [5 ]
Gomez, Elda Fischi [6 ,7 ]
Gui, Laura [6 ]
Huppi, Petra S. [6 ]
Kersbergen, Karina J. [2 ]
Makropoulos, Antonios [5 ,8 ]
Melbourne, Andrew [4 ]
Moeskops, Pim [1 ]
Mol, Christian P. [1 ]
Kuklisova-Murgasova, Maria [5 ]
Rueckert, Daniel [8 ]
Schnabel, Julia A. [9 ]
Srhoj-Egekher, Vedran [10 ]
Wu, Jue [3 ]
Wang, Siying [9 ]
de Vries, Linda S. [2 ]
Viergever, Max A. [1 ]
机构
[1] Univ Med Ctr Utrecht, Image Sci Inst, Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Dept Neonatol, Utrecht, Netherlands
[3] Univ Penn, Penn Image Comp & Sci Lab, Philadelphia, PA 19104 USA
[4] UCL, Ctr Med Image Comp, London WC1E 6BT, England
[5] Kings Coll London, Div Imaging Sci & Biomed Engn, Ctr Dev Brain, London WC2R 2LS, England
[6] Univ Geneva, Dept Pediat, Div Dev & Growth, CH-1211 Geneva 4, Switzerland
[7] Ecole Polytech Fed Lausanne, Signal Proc Lab LTS5, CH-1015 Lausanne, Switzerland
[8] Univ London Imperial Coll Sci Technol & Med, Biomed Image Anal Grp, London SW7 2AZ, England
[9] Univ Oxford, Dept Engn Sci, Inst Biomed Engn, Oxford OX1 2JD, England
[10] Univ Zagreb, Fac Elect Engn & Comp, Zagreb 41000, Croatia
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
Neonatal brain; MRI; Brain segmentation; Segmentation evaluation; Segmentation comparison; COMPUTER-AIDED DETECTION; IMAGE REGISTRATION; PREMATURE-INFANTS; MR-IMAGES; TERM;
D O I
10.1016/j.media.2014.11.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A number of algorithms for brain segmentation in preterm born infants have been published, but a reliable comparison of their performance is lacking. The NeoBrainS12 study (http://neobrains12.isi.uu.nl), providing three different image sets of preterm born infants, was set up to provide such a comparison. These sets are (i) axial scans acquired at 40 weeks corrected age, (ii) coronal scans acquired at 30 weeks corrected age and (iii) corona] scans acquired at 40 weeks corrected age. Each of these three sets consists of three T1- and T2-weighted MR images of the brain acquired with a 3T MRI scanner. The task was to segment cortical grey matter, non-myelinated and myelinated white matter, brainstem, basal ganglia and thalami, cerebellum, and cerebrospinal fluid in the ventricles and in the extracerebral space separately. Any team could upload the results and all segmentations were evaluated in the same way. This paper presents the results of eight participating teams. The results demonstrate that the participating methods were able to segment all tissue classes well, except myelinated white matter. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 151
页数:17
相关论文
共 39 条
  • [11] Active contours without edges for vector-valued images
    Chan, TE
    Sandberg, BY
    Vese, LA
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2000, 11 (02) : 130 - 141
  • [12] Chita S., 2013, SPIE MED IMAGING
  • [13] NONLINEAR ANISOTROPIC FILTERING OF MRI DATA
    GERIG, G
    KUBLER, O
    KIKINIS, R
    JOLESZ, FA
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1992, 11 (02) : 221 - 232
  • [14] Gui L., 2012, MICCAI GRAND CHA S12, P1
  • [15] Morphology-driven automatic segmentation of MR images of the neonatal brain
    Gui, Laura
    Lisowski, Radoslaw
    Faundez, Tamara
    Hueppi, Petra S.
    Lazeyras, Francois
    Kocher, Michel
    [J]. MEDICAL IMAGE ANALYSIS, 2012, 16 (08) : 1565 - 1579
  • [16] Abnormal cerebral structure is present at term in premature infants
    Inder, TE
    Warfield, SK
    Wang, H
    Hüppi, PS
    Volpe, JJ
    [J]. PEDIATRICS, 2005, 115 (02) : 286 - 294
  • [17] elastix: A Toolbox for Intensity-Based Medical Image Registration
    Klein, Stefan
    Staring, Marius
    Murphy, Keelin
    Viergever, Max A.
    Pluim, Josien P. W.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (01) : 196 - 205
  • [18] A dynamic 4D probabilistic atlas of the developing brain
    Kuklisova-Murgasova, Maria
    Aljabar, Paul
    Srinivasan, Latha
    Counsell, Serena J.
    Doria, Valentina
    Serag, Ahmed
    Gousias, Ioannis. S.
    Boardman, James P.
    Rutherford, Mary A.
    Edwards, A. David
    Hajnal, Joseph V.
    Rueckert, Daniel
    [J]. NEUROIMAGE, 2011, 54 (04) : 2750 - 2763
  • [19] Retrospective correction of MR intensity inhomogeneity by information minimization
    Likar, B
    Viergever, MA
    Pernus, F
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (12) : 1398 - 1410
  • [20] Lotufo R., 2002, MATH MORPHOLOGY ITS, V18, P341