Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning

被引:168
|
作者
Zhang, Yuyan [1 ]
Li, Xinyu [1 ]
Gao, Liang [1 ]
Wang, Lihui [2 ]
Wen, Long [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan, Hubei, Peoples R China
[2] KTH Royal Inst Technol, Dept Prod Engn, Stockholm, Sweden
基金
中国国家自然科学基金;
关键词
Rotating machinery fault diagnosis; Weighted minority oversampling; Feature learning; irnhalaneed data fault diagnosis; EMPIRICAL MODE DECOMPOSITION; SMOTE; PROGNOSIS;
D O I
10.1016/j.jmsy.2018.04.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Imbalanced data problems are prevalent in the real rotating machinery applications. Traditional data-driven diagnosis methods fail to identify the fault condition effectively for lack of enough fault samples. Therefore, this study proposes an effective three-stage fault diagnosis method towards imbalanced data. First, a new synthetic oversampling approach called weighted minority oversampling (WMO) is devised to balance the data distribution. It adopts a new data synthesis strategy to avoid generating incorrect or unnecessary samples. Second, to select useful features automatically, an enhanced deep auto-encoder (DA) approach is adopted. DA is improved in two aspects: 1) a new cost function based on maximum correntropy and sparse penalty is designed to learn sparse robust features; 2) a fine-tuning operation with a self-adaptive learning rate is developed to ensure the good convergence performance. Finally, the C4.5 decision tree identifies the learned features. The proposed method named WMODA is evaluated on 25 benchmark imbalanced datasets. It achieves better results than five well-known imbalanced data learning methods. It is also evaluated on a real engineering dataset. The experimental results show that WMODA can detect more fault samples than the traditional data-driven methods.
引用
收藏
页码:34 / 50
页数:17
相关论文
共 50 条
  • [21] A novel deep neural network based on an unsupervised feature learning method for rotating machinery fault diagnosis
    Cheng, Chun
    Liu, Wenyi
    Wang, Weiping
    Pecht, Michael
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (09)
  • [22] Oversampling adversarial network for class-imbalanced fault diagnosis
    Zareapoor, Masoumeh
    Shamsolmoali, Pourya
    Yang, Jie
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 149
  • [23] An Integrated Approach to Rotating Machinery Fault Diagnosis Using, EEMD, SVM, and Augmented Data
    Lobato, Thiago H. G.
    da Silva, Roger R.
    da Costa, Ednelson S.
    Mesquita, Alexandre L. A.
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2020, 8 (03) : 403 - 408
  • [24] A wind turbine frequent principal fault detection and localization approach with imbalanced data using an improved synthetic oversampling technique
    Jiang, Na
    Li, Ning
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 126 (126)
  • [25] Fault Diagnosis Approach for Rotating Machinery Based on Feature Importance Ranking and Selection
    Yuan, Zong
    Zhou, Taotao
    Liu, Jie
    Zhang, Changhe
    Liu, Yong
    SHOCK AND VIBRATION, 2021, 2021
  • [26] Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method
    Li, Wei
    Zhu, Zhencai
    Jiang, Fan
    Zhou, Gongbo
    Chen, Guoan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 50-51 : 414 - 426
  • [27] A Weakly Supervised Learning-Based Oversampling Framework for Class-Imbalanced Fault Diagnosis
    Qian, Min
    Li, Yan-Fu
    IEEE TRANSACTIONS ON RELIABILITY, 2022, 71 (01) : 429 - 442
  • [28] A minority oversampling approach for fault detection with heterogeneous imbalanced data
    Liu, Jie
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 184
  • [29] Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection
    Yan, Xiaoan
    Jia, Minping
    KNOWLEDGE-BASED SYSTEMS, 2019, 163 : 450 - 471
  • [30] An improved and random synthetic minority oversampling technique for imbalanced data
    Wei, Guoliang
    Mu, Weimeng
    Song, Yan
    Dou, Jun
    KNOWLEDGE-BASED SYSTEMS, 2022, 248