Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning

被引:168
|
作者
Zhang, Yuyan [1 ]
Li, Xinyu [1 ]
Gao, Liang [1 ]
Wang, Lihui [2 ]
Wen, Long [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan, Hubei, Peoples R China
[2] KTH Royal Inst Technol, Dept Prod Engn, Stockholm, Sweden
基金
中国国家自然科学基金;
关键词
Rotating machinery fault diagnosis; Weighted minority oversampling; Feature learning; irnhalaneed data fault diagnosis; EMPIRICAL MODE DECOMPOSITION; SMOTE; PROGNOSIS;
D O I
10.1016/j.jmsy.2018.04.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Imbalanced data problems are prevalent in the real rotating machinery applications. Traditional data-driven diagnosis methods fail to identify the fault condition effectively for lack of enough fault samples. Therefore, this study proposes an effective three-stage fault diagnosis method towards imbalanced data. First, a new synthetic oversampling approach called weighted minority oversampling (WMO) is devised to balance the data distribution. It adopts a new data synthesis strategy to avoid generating incorrect or unnecessary samples. Second, to select useful features automatically, an enhanced deep auto-encoder (DA) approach is adopted. DA is improved in two aspects: 1) a new cost function based on maximum correntropy and sparse penalty is designed to learn sparse robust features; 2) a fine-tuning operation with a self-adaptive learning rate is developed to ensure the good convergence performance. Finally, the C4.5 decision tree identifies the learned features. The proposed method named WMODA is evaluated on 25 benchmark imbalanced datasets. It achieves better results than five well-known imbalanced data learning methods. It is also evaluated on a real engineering dataset. The experimental results show that WMODA can detect more fault samples than the traditional data-driven methods.
引用
收藏
页码:34 / 50
页数:17
相关论文
共 50 条
  • [1] Categorical Feature GAN for Imbalanced Intelligent Fault Diagnosis of Rotating Machinery
    Dai, Jun
    Wang, Jun
    Yao, Linquan
    Huang, Weiguo
    Zhu, Zhongkui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [2] A Novel Fault Diagnosis method for Rotating Machinery of Imbalanced Data
    Han, Qi
    Wang, Xianghua
    Yang, Rui
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2072 - 2077
  • [3] A Lightweight Kernel Density Estimation and Adaptive Synthetic Sampling Method for Fault Diagnosis of Rotating Machinery with Imbalanced Data
    Lu, Wenhao
    Wang, Wei
    Qin, Xuefei
    Cai, Zhiqiang
    APPLIED SCIENCES-BASEL, 2024, 14 (24):
  • [4] Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning
    Xu, Qifa
    Lu, Shixiang
    Jia, Weiyin
    Jiang, Cuixia
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (06) : 1467 - 1481
  • [5] Feature extraction using adaptive multiwavelets and synthetic detection index for rotor fault diagnosis of rotating machinery
    Lu, Na
    Xiao, Zhihuai
    Malik, O. P.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 52-53 : 393 - 415
  • [6] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Li, Xiang
    Zhang, Wei
    Ding, Qian
    Sun, Jian-Qiao
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (02) : 433 - 452
  • [7] Intelligent fault diagnosis of rotating machinery based on deep learning with feature selection
    Han, Dongying
    Liang, Kai
    Shi, Peiming
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2020, 39 (04) : 939 - 953
  • [8] A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
    Shao Haidong
    Jiang Hongkai
    Zhao Huiwei
    Wang Fuan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 95 : 187 - 204
  • [9] An Imbalanced Fault Diagnosis Method Based on TFFO and CNN for Rotating Machinery
    Zhang, Long
    Liu, Yangyuan
    Zhou, Jianmin
    Luo, Muxu
    Pu, Shengxin
    Yang, Xiaotong
    SENSORS, 2022, 22 (22)
  • [10] Rotating machinery fault diagnosis for imbalanced data based on decision tree and fast clustering algorithm
    Zhang, Xiaochen
    Jiang, Dongxiang
    Long, Quan
    Han, Te
    JOURNAL OF VIBROENGINEERING, 2017, 19 (06) : 4247 - 4259