Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning

被引:167
|
作者
Zhang, Yuyan [1 ]
Li, Xinyu [1 ]
Gao, Liang [1 ]
Wang, Lihui [2 ]
Wen, Long [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan, Hubei, Peoples R China
[2] KTH Royal Inst Technol, Dept Prod Engn, Stockholm, Sweden
基金
中国国家自然科学基金;
关键词
Rotating machinery fault diagnosis; Weighted minority oversampling; Feature learning; irnhalaneed data fault diagnosis; EMPIRICAL MODE DECOMPOSITION; SMOTE; PROGNOSIS;
D O I
10.1016/j.jmsy.2018.04.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Imbalanced data problems are prevalent in the real rotating machinery applications. Traditional data-driven diagnosis methods fail to identify the fault condition effectively for lack of enough fault samples. Therefore, this study proposes an effective three-stage fault diagnosis method towards imbalanced data. First, a new synthetic oversampling approach called weighted minority oversampling (WMO) is devised to balance the data distribution. It adopts a new data synthesis strategy to avoid generating incorrect or unnecessary samples. Second, to select useful features automatically, an enhanced deep auto-encoder (DA) approach is adopted. DA is improved in two aspects: 1) a new cost function based on maximum correntropy and sparse penalty is designed to learn sparse robust features; 2) a fine-tuning operation with a self-adaptive learning rate is developed to ensure the good convergence performance. Finally, the C4.5 decision tree identifies the learned features. The proposed method named WMODA is evaluated on 25 benchmark imbalanced datasets. It achieves better results than five well-known imbalanced data learning methods. It is also evaluated on a real engineering dataset. The experimental results show that WMODA can detect more fault samples than the traditional data-driven methods.
引用
收藏
页码:34 / 50
页数:17
相关论文
共 50 条
  • [1] Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning
    Jie Liu
    Kaibo Zhou
    Chaoying Yang
    Guoliang Lu
    Frontiers of Mechanical Engineering, 2021, 16 : 829 - 839
  • [2] Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning
    Jie LIU
    Kaibo ZHOU
    Chaoying YANG
    Guoliang LU
    Frontiers of Mechanical Engineering, 2021, (04) : 829 - 839
  • [3] Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning
    Liu, Jie
    Zhou, Kaibo
    Yang, Chaoying
    Lu, Guoliang
    FRONTIERS OF MECHANICAL ENGINEERING, 2021, 16 (04) : 829 - 839
  • [4] Categorical Feature GAN for Imbalanced Intelligent Fault Diagnosis of Rotating Machinery
    Dai, Jun
    Wang, Jun
    Yao, Linquan
    Huang, Weiguo
    Zhu, Zhongkui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [5] A Novel Fault Diagnosis method for Rotating Machinery of Imbalanced Data
    Han, Qi
    Wang, Xianghua
    Yang, Rui
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2072 - 2077
  • [6] Sequential Feature-Augmented Deep Multilabel Learning for Compound Fault Diagnosis of Rotating Machinery With Few Labeled and Imbalanced Data
    Wang, Xinyue
    Xu, Gangyan
    Zhou, Ziye
    Zou, Yuli
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (12) : 13947 - 13955
  • [7] Synergistic Feature Fusion With Deep Convolutional GAN for Fault Diagnosis in Imbalanced Rotating Machinery
    Ye, Lihao
    Zhang, Ke
    Jiang, Bin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (02) : 1901 - 1910
  • [8] An efficient method for imbalanced fault diagnosis of rotating machinery
    Yang, Jingli
    Yin, Shuangyan
    Gao, Tianyu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (11)
  • [9] Fault Detection and Diagnosis with Imbalanced and Noisy Data: A Hybrid Framework for Rotating Machinery
    Jalayer, Masoud
    Kaboli, Amin
    Orsenigo, Carlotta
    Vercellis, Carlo
    MACHINES, 2022, 10 (04)
  • [10] Enhanced generative adversarial networks for fault diagnosis of rotating machinery with imbalanced data
    Li, Qi
    Chen, Liang
    Shen, Changqing
    Yang, Bingru
    Zhu, Zhongkui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2019, 30 (11)