Machine Learning in Screening High Performance Electrocatalysts for CO2 Reduction

被引:76
|
作者
Zhang, Ning [1 ]
Yang, Baopeng [2 ]
Liu, Kang [2 ]
Li, Hongmei [2 ]
Chen, Gen [1 ]
Qiu, Xiaoqing [3 ]
Li, Wenzhang [3 ]
Hu, Junhua [4 ]
Fu, Junwei [2 ]
Jiang, Yong [1 ]
Liu, Min [2 ]
Ye, Jinhua [5 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ, Sch Phys Sci & Elect, Changsha 410083, Hunan, Peoples R China
[3] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[4] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450002, Peoples R China
[5] Natl Inst Mat Sci NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
基金
中国国家自然科学基金;
关键词
CO2; reduction; electrocatalysts; high throughput calculations; machine learning; theoretical calculations; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTRONIC-STRUCTURE; HYDROGEN EVOLUTION; OXYGEN EVOLUTION; FORMIC-ACID; AQUEOUS CO2; ELECTROREDUCTION; CATALYSTS; CONVERSION;
D O I
10.1002/smtd.202100987
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Converting CO2 into carbon-based fuels is promising for relieving the greenhouse gas effect and the energy crisis. However, the selectivity and efficiency of current electrocatalysts for CO2 reductions are still not satisfactory. In this paper, the development of machine learning methods in screening CO2 reduction electrocatalysts over the recent years is reviewed. Through high-throughput calculation of some key descriptors such as adsorption energies, d-band center, and coordination number by well-constructed machine learning models, the catalytic activity, optimal composition, active sites, and CO2 reduction reaction pathway over various possible materials can be predicted and understood. Machine learning is now realized as a fast and low-cost method to effectively explore high performance electrocatalysts for CO2 reduction.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Metal- and Carbon-Based Materials as Heterogeneous Electrocatalysts for CO2 Reduction
    Khan, Azam
    Ullah, Haseeb
    Nasir, Jamal Abdul
    Shuda, Suzanne
    Chen, Wei
    Khan, M. Abdullah
    Zia-ur-Rehman
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (05) : 3031 - 3048
  • [42] Indium-based electrocatalysts for CO2 reduction to C1 products
    Cheng, Qin
    Huang, Ming
    Ye, Qingqing
    Deng, Bangwei
    Dong, Fan
    CHINESE CHEMICAL LETTERS, 2024, 35 (06)
  • [43] Modification of CO2 Reduction Activity of Nanostructured Silver Electrocatalysts by Surface Halide Anions
    Hsieh, Yu-Chi
    Betancourt, Luis E.
    Senanayake, Sanjaya D.
    Hu, Enyuan
    Zhang, Yu
    Xu, Wenqian
    Polyansky, Dmitry E.
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (01): : 102 - 109
  • [44] Atomic Layer Deposition of Cu Electrocatalysts on Gas Diffusion Electrodes for CO2 Reduction
    Lenef, Julia D.
    Lee, Si Young
    Fuelling, Kalyn M.
    Rivera Cruz, Kevin E.
    Prajapati, Aditya
    Delgado Cornejo, Daniel O.
    Cho, Tae H.
    Sun, Kai
    Alvarado, Eugenio
    Arthur, Timothy S.
    Roberts, Charles A.
    Hahn, Christopher
    McCrory, Charles C. L.
    Dasgupta, Neil P.
    NANO LETTERS, 2023, 23 (23) : 10779 - 10787
  • [45] Machine-learning-guided prediction of Cu-based electrocatalysts towards ethylene production in CO2 reduction
    Zhang, Qing
    Zhu, Kai
    Luo, Yuhong
    Bai, Zhengyu
    Zhang, Zisheng
    Li, Jingde
    MOLECULAR CATALYSIS, 2023, 547
  • [46] An Extrinsic Faradaic Layer on CuSn for High-Performance Electrocatalytic CO2 Reduction
    Ren, Feilong
    Hu, Wenjian
    Wang, Cheng
    Wang, Pin
    Li, Wenbo
    Wu, Congping
    Yao, Yingfang
    Luo, Wenjun
    Zou, Zhigang
    CCS CHEMISTRY, 2022, 4 (05): : 1610 - 1618
  • [47] Thiocyanate-Modified Silver Nanofoam for Efficient CO2 Reduction to CO
    Wei, Li
    Li, Hao
    Chen, Junsheng
    Yuan, Ziwen
    Huang, Cbanwei
    Liao, Xiaozhou
    Henkelman, Graeme
    Chen, Yuan
    ACS CATALYSIS, 2020, 10 (02) : 1444 - 1453
  • [48] Electrocatalytic Alloys for CO2 Reduction
    He, Jingfu
    Johnson, Noah J. J.
    Huang, Aoxue
    Berlinguette, Curtis P.
    CHEMSUSCHEM, 2018, 11 (01) : 48 - 57
  • [49] Sn Quantum Dots for Electrocatalytic Reduction of CO2 to HCOOH
    Tian Jianjian
    Ma Xia
    Wang Min
    Yao Heliang
    Hua Zile
    Zhang Lingxia
    JOURNAL OF INORGANIC MATERIALS, 2021, 36 (12) : 1337 - +
  • [50] Intermetallic CuAu nanoalloy for stable electrochemical CO2 reduction
    Kuang, Siyu
    Li, Minglu
    Chen, Xiaoyi
    Chi, Haoyuan
    Lin, Jianlong
    Hu, Zheng
    Hu, Shi
    Zhang, Sheng
    Ma, Xinbin
    CHINESE CHEMICAL LETTERS, 2023, 34 (07)