Machine Learning in Screening High Performance Electrocatalysts for CO2 Reduction

被引:84
作者
Zhang, Ning [1 ]
Yang, Baopeng [2 ]
Liu, Kang [2 ]
Li, Hongmei [2 ]
Chen, Gen [1 ]
Qiu, Xiaoqing [3 ]
Li, Wenzhang [3 ]
Hu, Junhua [4 ]
Fu, Junwei [2 ]
Jiang, Yong [1 ]
Liu, Min [2 ]
Ye, Jinhua [5 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ, Sch Phys Sci & Elect, Changsha 410083, Hunan, Peoples R China
[3] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[4] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450002, Peoples R China
[5] Natl Inst Mat Sci NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
基金
中国国家自然科学基金;
关键词
CO2; reduction; electrocatalysts; high throughput calculations; machine learning; theoretical calculations; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTRONIC-STRUCTURE; HYDROGEN EVOLUTION; OXYGEN EVOLUTION; FORMIC-ACID; AQUEOUS CO2; ELECTROREDUCTION; CATALYSTS; CONVERSION;
D O I
10.1002/smtd.202100987
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Converting CO2 into carbon-based fuels is promising for relieving the greenhouse gas effect and the energy crisis. However, the selectivity and efficiency of current electrocatalysts for CO2 reductions are still not satisfactory. In this paper, the development of machine learning methods in screening CO2 reduction electrocatalysts over the recent years is reviewed. Through high-throughput calculation of some key descriptors such as adsorption energies, d-band center, and coordination number by well-constructed machine learning models, the catalytic activity, optimal composition, active sites, and CO2 reduction reaction pathway over various possible materials can be predicted and understood. Machine learning is now realized as a fast and low-cost method to effectively explore high performance electrocatalysts for CO2 reduction.
引用
收藏
页数:19
相关论文
共 151 条
[31]   Computational Surface Chemistry of Tetrahedral Amorphous Carbon by Combining Machine Learning and Density Functional Theory [J].
Deringer, Volker L. ;
Caro, Miguel A. ;
Jana, Richard ;
Aarva, Anja ;
Elliott, Stephen R. ;
Laurila, Tomi ;
Csanyi, Gabor ;
Pastewka, Lars .
CHEMISTRY OF MATERIALS, 2018, 30 (21) :7438-7445
[32]   The NOMAD laboratory: from data sharing to artificial intelligence [J].
Draxl, Claudia ;
Scheffler, Matthias .
JOURNAL OF PHYSICS-MATERIALS, 2019, 2 (03)
[33]   Selective Catalytic Reduction at Quasi-Perfect Pt(100) Domains: A Universal Low-Temperature Pathway from Nitrite to N2 [J].
Duca, Matteo ;
Figueiredo, Marta C. ;
Climent, Victor ;
Rodriguez, Paramaconi ;
Feliu, Juan M. ;
Koper, Marc T. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (28) :10928-10939
[34]   The Central Role of Bicarbonate in the Electrochemical Reduction of Carbon Dioxide on Gold [J].
Dunwell, Marco ;
Lu, Qi ;
Heyes, Jeffrey M. ;
Rosen, Jonathan ;
Chen, Jingguang G. ;
Yan, Yushan ;
Jiao, Feng ;
Xu, Bingjun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (10) :3774-3783
[35]   Catalyst Acquisition by Data Science (CADS): a web-based catalyst informatics platform for discovering catalysts [J].
Fujima, Jun ;
Tanaka, Yuzuru ;
Miyazato, Itsuki ;
Takahashi, Lauren ;
Takahashi, Keisuke .
REACTION CHEMISTRY & ENGINEERING, 2020, 5 (05) :903-911
[36]   Activity and Selectivity Control in CO2 Electroreduction to Multicarbon Products over CuOx Catalysts via Electrolyte Design [J].
Gao, Dunfeng ;
McCrum, Ian T. ;
Deo, Shyam ;
Choi, Yong-Wook ;
Scholten, Fabian ;
Wan, Weiming ;
Chen, Jingguang G. ;
Janik, Michael J. ;
Roldan Cuenya, Beatriz .
ACS CATALYSIS, 2018, 8 (11) :10012-+
[37]   Size-Dependent Electrocatalytic Reduction of CO2 over Pd Nanoparticles [J].
Gao, Dunfeng ;
Zhou, Hu ;
Wang, Jing ;
Miao, Shu ;
Yang, Fan ;
Wang, Guoxiong ;
Wang, Jianguo ;
Bao, Xinhe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (13) :4288-4291
[38]   Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products [J].
Garza, Alejandro J. ;
Bell, Alexis T. ;
Head-Gordon, Martin .
ACS CATALYSIS, 2018, 8 (02) :1490-1499
[39]   A Semiempirical Method to Detect and Correct DFT-Based Gas-Phase Errors and Its Application in Electrocatalysis [J].
Granda-Marulanda, Laura P. ;
Rendon-Calle, Alejandra ;
Builes, Santiago ;
Illas, Francesc ;
Koper, Marc T. M. ;
Calle-Vallejo, Federico .
ACS CATALYSIS, 2020, 10 (12) :6900-6907
[40]   Crystallography Open Database - an open-access collection of crystal structures [J].
Grazulis, Saulius ;
Chateigner, Daniel ;
Downs, Robert T. ;
Yokochi, A. F. T. ;
Quiros, Miguel ;
Lutterotti, Luca ;
Manakova, Elena ;
Butkus, Justas ;
Moeck, Peter ;
Le Bail, Armel .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2009, 42 :726-729