Machine Learning in Screening High Performance Electrocatalysts for CO2 Reduction

被引:84
作者
Zhang, Ning [1 ]
Yang, Baopeng [2 ]
Liu, Kang [2 ]
Li, Hongmei [2 ]
Chen, Gen [1 ]
Qiu, Xiaoqing [3 ]
Li, Wenzhang [3 ]
Hu, Junhua [4 ]
Fu, Junwei [2 ]
Jiang, Yong [1 ]
Liu, Min [2 ]
Ye, Jinhua [5 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ, Sch Phys Sci & Elect, Changsha 410083, Hunan, Peoples R China
[3] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[4] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450002, Peoples R China
[5] Natl Inst Mat Sci NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
基金
中国国家自然科学基金;
关键词
CO2; reduction; electrocatalysts; high throughput calculations; machine learning; theoretical calculations; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTRONIC-STRUCTURE; HYDROGEN EVOLUTION; OXYGEN EVOLUTION; FORMIC-ACID; AQUEOUS CO2; ELECTROREDUCTION; CATALYSTS; CONVERSION;
D O I
10.1002/smtd.202100987
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Converting CO2 into carbon-based fuels is promising for relieving the greenhouse gas effect and the energy crisis. However, the selectivity and efficiency of current electrocatalysts for CO2 reductions are still not satisfactory. In this paper, the development of machine learning methods in screening CO2 reduction electrocatalysts over the recent years is reviewed. Through high-throughput calculation of some key descriptors such as adsorption energies, d-band center, and coordination number by well-constructed machine learning models, the catalytic activity, optimal composition, active sites, and CO2 reduction reaction pathway over various possible materials can be predicted and understood. Machine learning is now realized as a fast and low-cost method to effectively explore high performance electrocatalysts for CO2 reduction.
引用
收藏
页数:19
相关论文
共 151 条
[1]   The Impact of Specifically Adsorbed Ions on the Copper-Catalyzed Electroreduction of CO2 [J].
Akhade, Sneha A. ;
McCrum, Ian T. ;
Janik, Michael J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (06) :F477-F484
[2]   Robust carbon dioxide reduction on molybdenum disulphide edges [J].
Asadi, Mohammad ;
Kumar, Bijandra ;
Behranginia, Amirhossein ;
Rosen, Brian A. ;
Baskin, Artem ;
Repnin, Nikita ;
Pisasale, Davide ;
Phillips, Patrick ;
Zhu, Wei ;
Haasch, Richard ;
Klie, Robert F. ;
Kral, Petr ;
Abiade, Jeremiah ;
Salehi-Khojin, Amin .
NATURE COMMUNICATIONS, 2014, 5
[3]   Toward a Design of Active Oxygen Evolution Catalysts: Insights from Automated Density Functional Theory Calculations and Machine Learning [J].
Back, Seoin ;
Tran, Kevin ;
Ulissi, Zachary W. .
ACS CATALYSIS, 2019, 9 (09) :7651-7659
[4]   Electrochemical CO2 Reduction: Classifying Cu Facets [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
ACS CATALYSIS, 2019, 9 (09) :7894-7899
[5]   Electrochemical CO2 Reduction: A Classification Problem [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
CHEMPHYSCHEM, 2017, 18 (22) :3266-3273
[6]   Formulation of mix design for 3D printing of geopolymers: a machine learning approach [J].
Bagheri, Ali ;
Cremona, Christian .
MATERIALS ADVANCES, 2020, 1 (04) :720-727
[7]   Artificial intelligence in synthetic chemistry: achievements and prospects [J].
Baskin, Igor I. ;
Madzhidov, Timur I. ;
Antipin, Igor S. ;
Varnek, Alexandre A. .
RUSSIAN CHEMICAL REVIEWS, 2017, 86 (11) :1127-1156
[8]   Active learning for accelerated design of layered materials [J].
Bassman, Lindsay ;
Rajak, Pankaj ;
Kalia, Rajiv K. ;
Nakano, Aiichiro ;
Sha, Fei ;
Sun, Jifeng ;
Singh, David J. ;
Aykol, Muratahan ;
Huck, Patrick ;
Persson, Kristin ;
Vashishta, Priya .
NPJ COMPUTATIONAL MATERIALS, 2018, 4
[9]   High-Entropy Alloys as a Discovery Platform for Electrocatalysis [J].
Batchelor, Thomas A. A. ;
Pedersen, Jack K. ;
Winther, Simon H. ;
Castelli, Ivano E. ;
Jacobsen, Karsten W. ;
Rossmeisl, Jan .
JOULE, 2019, 3 (03) :834-845
[10]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99