Two-site H2O2 photo-oxidation on haematite photoanodes

被引:24
作者
Avital, Yotam Y. [1 ]
Dotan, Hen [2 ]
Klotz, Dino [2 ]
Grave, Daniel A. [2 ]
Tsyganok, Anton [2 ]
Gupta, Bhavana [1 ]
Kolusheva, Sofia [3 ]
Visoly-Fisher, Iris [1 ]
Rothschild, Avner [2 ]
Yochelis, Arik [1 ,4 ]
机构
[1] Ben Gurion Univ Negev, BIDR, Swiss Inst Dryland Environm & Energy Res, Dept Solar Energy & Environm Phys, IL-8499000 Midreshet Ben Gurion, Israel
[2] Technion Israel Inst Technol, Dept Mat Sci & Engn, IL-32000 Haifa, Israel
[3] Ben Gurion Univ Negev, Ilse Katz Inst Nanoscale Sci & Technol, IL-8410501 Beer Sheva, Israel
[4] Ben Gurion Univ Negev, Dept Phys, IL-8410501 Beer Sheva, Israel
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
基金
以色列科学基金会; 欧洲研究理事会;
关键词
PHOTOELECTROCHEMICAL WATER OXIDATION; CHARGE-CARRIER DYNAMICS; OXYGEN EVOLUTION; IRON-OXIDE; ALPHA-FE2O3; PHOTOANODES; SURFACE-STATES; SOLAR; CATALYST; MECHANISM; INTERFACES;
D O I
10.1038/s41467-018-06141-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
H2O2 is a sacrificial reductant that is often used as a hole scavenger to gain insight into photoanode properties. Here we show a distinct mechanism of H2O2 photo-oxidation on haematite (alpha-Fe2O3) photoanodes. We found that the photocurrent voltammograms display non-monotonous behaviour upon varying the H2O2 concentration, which is not in accord with a linear surface reaction mechanism that involves a single reaction site as in Eley-Rideal reactions. We postulate a nonlinear kinetic mechanism that involves concerted interaction between adions induced by H2O2 deprotonation in the alkaline solution with adjacent intermediate species of the water photo-oxidation reaction, thereby involving two reaction sites as in Langmuir-Hinshelwood reactions. The devised kinetic model reproduces our main observations and predicts coexistence of two surface reaction paths (bi-stability) in a certain range of potentials and H2O2 concentrations. This prediction is confirmed experimentally by observing a hysteresis loop in the photocurrent voltammogram measured in the predicted coexistence range.
引用
收藏
页数:10
相关论文
共 69 条
  • [31] Water Oxidation at Hematite Photoelectrodes: The Role of Surface States
    Klahr, Benjamin
    Gimenez, Sixto
    Fabregat-Santiago, Francisco
    Hamann, Thomas
    Bisquert, Juan
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) : 4294 - 4302
  • [32] Empirical Analysis of the Photoelectrochemical Impedance Response of Hematite Photoanodes for Water Photo-oxidation
    Klotz, Dino
    Grave, Daniel A.
    Dotan, Hen
    Rothschild, Avner
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (06): : 1466 - 1472
  • [33] Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting
    Klotz, Dino
    Grave, Daniel A.
    Rothschild, Avner
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (31) : 20383 - 20392
  • [34] Empirical in operando analysis of the charge carrier dynamics in hematite photoanodes by PEIS, IMPS and IMVS
    Klotz, Dino
    Ellis, David Shai
    Dotan, Hen
    Rothschild, Avner
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (34) : 23438 - 23457
  • [35] Krischer K, 2001, ANGEW CHEM INT EDIT, V40, P851, DOI 10.1002/1521-3773(20010302)40:5<850::AID-ANIE850>3.0.CO
  • [36] 2-3
  • [37] Rate Law Analysis of Water Oxidation on a Hematite Surface
    Le Formal, Florian
    Pastor, Ernest
    Tilley, S. David
    Mesa, Camilo A.
    Pendlebury, Stephanie R.
    Graetzel, Michael
    Durrant, James R.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (20) : 6629 - 6637
  • [38] Lin FD, 2014, NAT MATER, V13, P81, DOI [10.1038/NMAT3811, 10.1038/nmat3811]
  • [39] Catalytic decomposition of hydrogen peroxide on iron oxide: Kinetics, mechanism, and implications
    Lin, SS
    Gurol, MD
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (10) : 1417 - 1423
  • [40] Mechanism of H2O2 Decomposition on Transition Metal Oxide Surfaces
    Lousada, Claudio M.
    Johansson, Adam Johannes
    Brinck, Tore
    Jonsson, Mats
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (17) : 9533 - 9543