NON-CONFORMAL LOEWNER TYPE ESTIMATES FOR MODULUS OF CURVE FAMILIES

被引:28
作者
Adamowicz, Tomasz [1 ]
Shanmugalingam, Nageswari [1 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
p-modulus of curve family; Loewner type theorem; metric measure spaces; conformal mappings; p-capacity; p-harmonic functions; MAPS;
D O I
10.5186/aasfm.2010.3538
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop various upper and lower estimates for p-modulus of curve families on ring domains in the setting of abstract metric measure spaces and derive p-Loewner type estimates for continua. These estimates are obtained for doubling metric measure spaces or Q-Ahlfors regular metric measure spaces supporting (1,p)-Poincare inequality for the situations of 1 <= p <= Q and p > Q. We also study p-modulus estimates with respect to Riesz potentials.
引用
收藏
页码:609 / 626
页数:18
相关论文
共 18 条
[1]  
Ahlfors L., 2006, U LECT SER, V38
[2]  
[Anonymous], 1974, REAL COMPLEX ANAL
[3]  
[Anonymous], 1971, LECT NOTES MATH
[4]  
[Anonymous], 1962, TAMS
[5]  
CARAMAN P, 2002, REV ROUMAINE MATH PU, V47, P621
[6]  
CARAMAN P, 1994, REV ROUMAINE MATH PU, V39, P579
[7]  
Caraman P., 1994, Rev. Roumaine Math. Pures Appl, V39, P509
[8]  
Garofalo N, 2010, HOUSTON J MATH, V36, P681
[9]   Quasiconformal maps in metric spaces with controlled geometry [J].
Heinonen, J ;
Koskela, P .
ACTA MATHEMATICA, 1998, 181 (01) :1-61
[10]  
Heinonen J., 2001, Lectures on analysis on metric spaces, DOI 10.1007/978-1-4613-0131-8