Superharmonicity of curvature function for the convex level sets of harmonic functions

被引:6
作者
Ma, Xi-Nan [1 ]
Zhang, Wei [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
GAUSSIAN CURVATURE; QUASICONCAVE SOLUTIONS; ELLIPTIC PROBLEMS; CONCAVITY; DIRICHLET; EQUATION; DOMAINS; CURVES; RINGS;
D O I
10.1007/s00526-021-02023-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the combination of the norm of gradient and the Gaussian curvature for the convex level sets of harmonic function is superharmonic.
引用
收藏
页数:12
相关论文
共 30 条
[1]  
Ahlfors Lars V., 2010, Topics in Geometric Function Theory
[2]   A Constant Rank Theorem for Quasiconcave Solutions of Fully Nonlinear Partial Differential Equations [J].
Bian, Baojun ;
Guan, Pengfei ;
Ma, Xi-Nan ;
Xu, Lu .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (01) :101-119
[3]   Quasiconcave Solutions to Elliptic Problems in Convex Rings [J].
Bianchini, Chiara ;
Longinetti, Marco ;
Salani, Paolo .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) :1565-1589
[4]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[5]   CONVEXITY PROPERTIES OF SOLUTIONS TO SOME CLASSICAL VARIATIONAL-PROBLEMS [J].
CAFFARELLI, LA ;
SPRUCK, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (11) :1337-1379
[6]   PRINCIPAL CURVATURE ESTIMATES FOR THE CONVEX LEVEL SETS OF SEMILINEAR ELLIPTIC EQUATIONS [J].
Chang, Sun-Yung Alice ;
Ma, Xi-Nan ;
Yang, Paul .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (03) :1151-1164
[7]   On the Dirichlet and Serrin Problems for the Inhomogeneous Infinity Laplacian in Convex Domains: Regularity and Geometric Results [J].
Crasta, Graziano ;
Fragala, Ilaria .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (03) :1577-1607
[8]  
GABRIEL R, 1957, J LOND MATH SOC, V32, P286
[9]   CONVEXITY OF LEVEL SETS FOR ELLIPTIC PROBLEMS IN CONVEX DOMAINS OR CONVEX RINGS: TWO COUNTEREXAMPLES [J].
Hamel, Francois ;
Nadirashvili, Nikolai ;
Sire, Yannick .
AMERICAN JOURNAL OF MATHEMATICS, 2016, 138 (02) :499-527
[10]   POWER CONCAVITY AND BOUNDARY-VALUE PROBLEMS [J].
KENNINGTON, AU .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (03) :687-704