Construction of Periodic Counterexamples to the Discrete-Time Kalman Conjecture

被引:0
作者
Seiler, Peter
Carrasco, Joaquin
机构
来源
2021 AMERICAN CONTROL CONFERENCE (ACC) | 2021年
关键词
PROBLEM COEFFICIENT CONDITIONS; STABILITY; AIZERMAN; EXISTENCE;
D O I
10.23919/ACC50511.2021.9483270
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the Lurye system of a discrete-time, linear time-invariant plant in negative feedback with a nonlinearity. Both monotone and slope-restricted nonlinearities are considered. The main result is a procedure to construct destabilizing nonlinearities for the Lurye system. If the plant satisfies a certain phase condition then a monotone nonlinearity can be constructed so that the Lurye system has a non-trivial periodic cycle. Several examples are provided to demonstrate the construction. This represents a contribution for absolute stability analysis since the constructed nonlinearity provides a less conservative upper bound than existing bounds in the literature.
引用
收藏
页码:4830 / 4835
页数:6
相关论文
共 26 条
[1]  
[Anonymous], 2017, Ph.D. thesis
[2]  
BARABANOV NE, 1988, SIBERIAN MATH J+, V29, P333
[3]   Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits [J].
Bragin, V. O. ;
Vagaitsev, V. I. ;
Kuznetsov, N. V. ;
Leonov, G. A. .
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2011, 50 (04) :511-543
[4]  
Carrasco J., 2020, DUALITY BOUNDS DISCR
[5]  
Carrasco J., 2011, IEEE T AUTOMATIC CON, V65, P4538
[6]   Zames-Falb multipliers for absolute stability: From O'Shea's contribution to convex searches [J].
Carrasco, Joaquin ;
Turner, Matthew C. ;
Heath, William P. .
EUROPEAN JOURNAL OF CONTROL, 2016, 28 :1-19
[7]   Second-order counterexample to the discrete-time Kalman conjecture [J].
Carrasco, Joaquin ;
Heath, William P. ;
de la Sen, Manuel .
2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, :981-985
[8]  
Desoer CA, 2009, FEEDBACK SYSTEMS INP
[9]  
Fitts R., 1966, IEEE T AUTOMAT CONTR, V11, P553
[10]  
Golub G., 2013, MULTIPLE INPUT DESCR