Infrared and visible image fusion using multi-scale pyramid network

被引:5
|
作者
Zuo, Fengyuan [1 ]
Huang, Yongdong [2 ]
Li, Qiufu [3 ]
Su, Weijian [1 ]
机构
[1] Dalian Minzu Univ, Sch Informat & Commun Engn, Dalian 116600, Peoples R China
[2] Dalian Minzu Univ, Ctr Math & Informat Sci, Dalian 116600, Peoples R China
[3] Shenzhen Univ, Coll Comp Sci & Software Engn, Comp Vis Inst, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural networks; Laplacian pyramid; image fusion; infrared and visible; PERFORMANCE;
D O I
10.1142/S0219691322500199
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Deep networks have been widely applied in infrared and visible image fusion. However, the current deep networks cannot well extract and fuse multi-scale information and high-frequency texture features of the source images. In this paper, a deep multi-scale pyramid network, termed MSPFNet, is proposed for infrared and visible image fusion by combining image Laplacian pyramid and deep network. Infrared and visible images are first decomposed into their Laplacian pyramids. For each source image, its Laplacian pyramid consists of a low-frequency component and a series of multi-scale high-frequency components containing texture details. Then, the Laplacian pyramid components of two source images in the same level are fused using convolutional neural networks (CNN). Finally, the final fused image is reconstructed on the fused Laplacian pyramid components using inverse Laplacian pyramid transform. The experimental results on publicly available datasets show that MSPFNet can efficiently extract and fuse the multi-scale detail information of source images, and the fused images of MSPFNet preserve more texture details of infrared and visible images than that of the previous state-of-the-art methods.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Infrared and visible image fusion using multi-scale edge-preserving decomposition and multiple saliency features
    Duan, Chaowei
    Wang, Zhisheng
    Xing, Changda
    Lu, Shanshan
    OPTIK, 2021, 228
  • [32] Infrared and visible image fusion via multi-scale multi-layer rolling guidance filter
    Prema, G.
    Arivazhagan, S.
    PATTERN ANALYSIS AND APPLICATIONS, 2022, 25 (04) : 933 - 950
  • [33] Deep Neural Network for Infrared and Visible Image Fusion Based on Multi-scale Decomposition and Interactive Residual Coordinate Attention
    Zong, Sha
    Xie, Zhihua
    Li, Qiang
    Liu, Guodong
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 254 - 262
  • [34] EgeFusion: Towards Edge Gradient Enhancement in Infrared and Visible Image Fusion With Multi-Scale Transform
    Tang, Haojie
    Liu, Gang
    Qian, Yao
    Wang, Jiebang
    Xiong, Jinxin
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 385 - 398
  • [35] Multi-scale infrared and visible image fusion framework based on dual partial differential equations
    Guo, Chentong
    Liu, Chenhua
    Deng, Lei
    Chen, Zhixiang
    Dong, Mingli
    Zhu, Lianqing
    Chen, Hanrui
    Lu, Xitian
    INFRARED PHYSICS & TECHNOLOGY, 2023, 135
  • [36] Infrared and visible image fusion based on saliency detection and deep multi-scale orientational features
    Liu, Gang
    Jia, Menghan
    Wang, Xiao
    Bavirisetti, Durga
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [37] Multi-scale convolutional neural networks and saliency weight maps for infrared and visible image fusion
    Yang, Chenxuan
    He, Yunan
    Sun, Ce
    Chen, Bingkun
    Cao, Jie
    Wang, Yongtian
    Hao, Qun
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 98
  • [38] Infrared and visible image fusion based on hybrid multi-scale decomposition and adaptive contrast enhancement
    Luo, Yueying
    He, Kangjian
    Xu, Dan
    Shi, Hongzhen
    Yin, Wenxia
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2025, 130
  • [39] AEFusion: A multi-scale fusion network combining Axial attention and Entropy feature Aggregation for infrared and visible images
    Li, Bicao
    Lu, Jiaxi
    Liu, Zhoufeng
    Shao, Zhuhong
    Li, Chunlei
    Du, Yifan
    Huang, Jie
    APPLIED SOFT COMPUTING, 2023, 132
  • [40] Multi-Level Adaptive Attention Fusion Network for Infrared and Visible Image Fusion
    Hu, Ziming
    Kong, Quan
    Liao, Qing
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 366 - 370