Influence of stacking sequence of basalt-fiber grilles on mechanical properties for textile-reinforced concrete and theoretical prediction

被引:10
|
作者
Jia, Minghao [1 ]
Xiao, Xueliang [1 ]
Lu, Xuefeng [1 ]
Feng, Guyu [1 ]
Qian, Kun [1 ]
机构
[1] Jiangnan Univ, Lihu Rd 1800, Wuxi 214122, Jiangsu, Peoples R China
关键词
basalt-fiber grille; lay-up architecture; concrete composites; mechanical property; theoretical prediction; BEHAVIOR; RESISTANCE; COMPOSITES; MICROSTRUCTURE; CAPACITY; TENSION; SHELLS; SLABS;
D O I
10.1177/0040517520903416
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
The purpose of this study is to investigate the effective way of laying up basalt-fiber grilles in concrete to improve mechanical properties, involving how the evolution of cracks is hindered and how the strength of concrete is increased by basalt filaments. In this research, three layers of basalt fiber grilles were placed in different positions of concrete composites. The compressive, splitting tensile, and beam flexural properties of the concrete composites were studied after 28 days of as-made sample curing. The reason for reduced cracks growing from basalt fiber grilles was analyzed to reveal the mechanism of increased strength and toughening of concrete composites. The results showed that a reasonable lay-up method has the highest value of utilization rate and can improve the compressive and split tensile strength of concrete specimens, especially for the flexural specimens. The reason was found to be the energy absorption, stress transfer, and bridging load-bearing effect of the basalt-fiber grilles on the hindering of the expansion of loading-induced cracks effectively. A theoretical model was thereafter developed to predict the flexural strength of concrete beam composites based on grille lay-up architecture. According to the analytical model, the corresponding predicted values compared with experimental results indicate a good coincidence and a reasonable accuracy, which is less than 12% of their discrepancy.
引用
收藏
页码:1931 / 1947
页数:17
相关论文
共 50 条
  • [41] Mechanical Properties of Recycled Concrete Reinforced by Basalt Fiber and Nano-silica
    Wang, Yonggui
    Zhang, Xuetong
    Fang, Jinjin
    Wang, Xingguo
    KSCE JOURNAL OF CIVIL ENGINEERING, 2022, 26 (08) : 3471 - 3485
  • [42] Experimental research and analysis on mechanical properties of chopped Basalt fiber reinforced concrete
    Wang, Jun
    Ma, Yue
    Zhang, Ye
    Chen, Wei
    Gongcheng Lixue/Engineering Mechanics, 2014, 31 (SUPPL.): : 99 - 102
  • [43] Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading
    Li, Weimin
    Xu, Jinyu
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 505 (1-2): : 178 - 186
  • [44] Dynamic mechanical properties of basalt fiber reinforced concrete after elevated temperatures
    Department of Airfield and Building Engineering, Air Force Engineering University, Xi'an
    Shaanxi
    710038, China
    不详
    Shaanxi
    710072, China
    不详
    Sichuan
    611430, China
    Baozha Yu Chongji, 1 (36-42):
  • [45] A comprehensive investigation into the influence of variation in the stacking sequence on the mechanical behaviour and drilling machinability of basalt fiber-reinforced composite tubes
    Erhan, Furkan
    Gemi, Lokman
    Yazman, Sakir
    Morkavuk, Sezer
    Koklu, Ugur
    COMPOSITES PART B-ENGINEERING, 2025, 299
  • [46] Experimental Study of the Mechanical Properties and Microstructure of Basalt Fiber-Reinforced Concrete
    Liu, Runqing
    Zhao, Shuo
    Sun, Sihui
    Cui, Yunpeng
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2023, 35 (07)
  • [47] Mechanical Properties of Recycled Concrete Reinforced by Basalt Fiber and Nano-silica
    Yonggui Wang
    Xuetong Zhang
    Jinjin Fang
    Xingguo Wang
    KSCE Journal of Civil Engineering, 2022, 26 : 3471 - 3485
  • [48] Mechanical Properties of Fiber-Reinforced Concrete Made with Basalt Filament Fibers
    Iyer, Padmanabhan
    Kenno, Sara Y.
    Das, Sreekanta
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2015, 27 (11)
  • [49] Study on mechanical properties of alkali-resistant basalt fiber reinforced concrete
    Li, Min
    Gong, Fei
    Wu, Zhishen
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 245
  • [50] Prediction of the Mechanical Properties of Basalt Fiber Reinforced High-Performance Concrete Using Machine Learning Techniques
    Hasanzadeh, Ali
    Vatin, Nikolai Ivanovich
    Hematibahar, Mohammad
    Kharun, Makhmud
    Shooshpasha, Issa
    MATERIALS, 2022, 15 (20)