We construct nonzero constant mean curvature H surfaces in the product spaces S-2 x R and H-2 x R by using suitable conjugate Plateau constructions. The resulting surfaces are complete, have bounded height, and are invariant under a discrete group of horizontal translations. A one-parameter family of unduloid-type surfaces is produced in S-2 x R for any H > 0 (some of which are compact) and in H-2 x R for any H > 1/2 (which are shown to be properly embedded bigraphs). Finally, we give a different construction in H-2 x R for H = 1/2, giving surfaces with the symmetries of a tessellation of H-2 by regular polygons.
机构:
Ctr Univ Def San Javier, Dept Ciencias, E-30729 Santiago De La Ribera, SpainCtr Univ Def San Javier, Dept Ciencias, E-30729 Santiago De La Ribera, Spain
Bueno, Antonio
Ortiz, Irene
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Univ Def San Javier, Dept Ciencias, E-30729 Santiago De La Ribera, SpainCtr Univ Def San Javier, Dept Ciencias, E-30729 Santiago De La Ribera, Spain
机构:
Univ Marne la Vallee, Lab Anal & Math Appl, F-77454 Champs Sur Marne, Marne La Vallee, FranceUniv Marne la Vallee, Lab Anal & Math Appl, F-77454 Champs Sur Marne, Marne La Vallee, France
Hauswirth, Laurent
Rosenberg, Harold
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math, F-75005 Paris, FranceUniv Marne la Vallee, Lab Anal & Math Appl, F-77454 Champs Sur Marne, Marne La Vallee, France
Rosenberg, Harold
Spruck, Joel
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USAUniv Marne la Vallee, Lab Anal & Math Appl, F-77454 Champs Sur Marne, Marne La Vallee, France