New Examples of Constant Mean Curvature Surfaces in S2 x R and H2 x R

被引:8
|
作者
Manzano, Jose M. [1 ]
Torralbo, Francisco [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
MINIMAL-SURFACES; IMMERSIONS; SPACE;
D O I
10.1307/mmj/1417799222
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct nonzero constant mean curvature H surfaces in the product spaces S-2 x R and H-2 x R by using suitable conjugate Plateau constructions. The resulting surfaces are complete, have bounded height, and are invariant under a discrete group of horizontal translations. A one-parameter family of unduloid-type surfaces is produced in S-2 x R for any H > 0 (some of which are compact) and in H-2 x R for any H > 1/2 (which are shown to be properly embedded bigraphs). Finally, we give a different construction in H-2 x R for H = 1/2, giving surfaces with the symmetries of a tessellation of H-2 by regular polygons.
引用
收藏
页码:701 / 723
页数:23
相关论文
共 50 条
  • [1] ON STABLE CONSTANT MEAN CURVATURE SURFACES IN S2 x R AND H2 x R
    Souam, Rabah
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (06) : 2845 - 2857
  • [2] Horizontal Delaunay surfaces with constant mean curvature in S2 x R and H2 x R
    Manzano, Jose M.
    Torralbo, Francisco
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2022, 10 (03) : 657 - 688
  • [3] A Hopf differential for constant mean curvature surfaces in S2 x R and H2 x R
    Abresch, U
    Rosenberg, H
    ACTA MATHEMATICA, 2004, 193 (02) : 141 - 174
  • [4] Complete surfaces of constant curvature in H2 x R and S2 x R
    Aledo, Juan A.
    Espinar, Jose M.
    Galvez, Jose A.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 29 (03) : 347 - 363
  • [5] CONSTANT MEAN CURVATURE ISOMETRIC IMMERSIONS INTO S2 x R AND H2 x R AND RELATED RESULTS
    Daniel, Benoit
    Domingos, Iury
    Vitorio, Feliciano
    ANNALES DE L INSTITUT FOURIER, 2023, 73 (01) : 203 - 249
  • [6] Surfaces with constant curvature in S2 x R and H2 x R.: Height estimates and representation
    Aledo, Juan A.
    Espinar, Jose M.
    Galvez, Jose A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2007, 38 (04): : 533 - 554
  • [7] Invariant surfaces with constant mean curvature in H2 x R
    Onnis, Irene I.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (04) : 667 - 682
  • [8] PERIODIC CONSTANT MEAN CURVATURE SURFACES IN H2 x R
    Mazet, Laurent
    Rodriguez, M. Magdalena
    Rosenberg, Harold
    ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (05) : 829 - 858
  • [9] INFINITE BOUNDARY VALUE PROBLEMS FOR CONSTANT MEAN CURVATURE GRAPHS IN H2 x R AND S2 x R
    Hauswirth, Laurent
    Rosenberg, Harold
    Spruck, Joel
    AMERICAN JOURNAL OF MATHEMATICS, 2009, 131 (01) : 195 - 226
  • [10] COMPACT EMBEDDED SURFACES WITH CONSTANT MEAN CURVATURE IN S2 x R
    Manzano, Jose M.
    Torralbo, Francisco
    AMERICAN JOURNAL OF MATHEMATICS, 2020, 142 (06) : 1981 - 1994