We construct nonzero constant mean curvature H surfaces in the product spaces S-2 x R and H-2 x R by using suitable conjugate Plateau constructions. The resulting surfaces are complete, have bounded height, and are invariant under a discrete group of horizontal translations. A one-parameter family of unduloid-type surfaces is produced in S-2 x R for any H > 0 (some of which are compact) and in H-2 x R for any H > 1/2 (which are shown to be properly embedded bigraphs). Finally, we give a different construction in H-2 x R for H = 1/2, giving surfaces with the symmetries of a tessellation of H-2 by regular polygons.
机构:
Univ Paris Diderot Paris 7, CNRS, UMR Geometrie & Dynam 7586, Inst Math Jussieu, F-75205 Paris 13, FranceUniv Paris Diderot Paris 7, CNRS, UMR Geometrie & Dynam 7586, Inst Math Jussieu, F-75205 Paris 13, France
机构:
Univ Paris Est, UFR Sci & technol, Dept Math, Lab Anal & Math Appl,UMR 8050, F-94010 Creteil, FranceUniv Paris Est, UFR Sci & technol, Dept Math, Lab Anal & Math Appl,UMR 8050, F-94010 Creteil, France
Mazet, Laurent
Rodriguez, M. Magdalena
论文数: 0引用数: 0
h-index: 0
机构:
Univ Granada, Dept Geometria & Topol, Granada 18071, SpainUniv Paris Est, UFR Sci & technol, Dept Math, Lab Anal & Math Appl,UMR 8050, F-94010 Creteil, France
Rodriguez, M. Magdalena
Rosenberg, Harold
论文数: 0引用数: 0
h-index: 0
机构:
Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, BrazilUniv Paris Est, UFR Sci & technol, Dept Math, Lab Anal & Math Appl,UMR 8050, F-94010 Creteil, France