EXPLoRA-web: linkage analysis of quantitative trait loci using bulk segregant analysis

被引:8
|
作者
Pulido-Tamayo, Sergio [1 ,2 ,3 ,4 ]
Duitama, Jorge [5 ]
Marchal, Kathleen [1 ,2 ,3 ,6 ]
机构
[1] IGent Toren, Dept Informat Technol, Technol Pk 15, B-9052 Ghent, Belgium
[2] UGent, Dept Plant Biotechnol & Bioinformat, Technol Pk 927, B-9052 Ghent, Belgium
[3] Bioinformat Inst Ghent, Technol Pk 927, B-9052 Ghent, Belgium
[4] Katholieke Univ Leuven, Dept Microbial & Mol Syst, Kasteelpk Arenberg 20, B-3001 Leuven, Belgium
[5] Int Ctr Trop Agr CIAT, Agrobiodivers Res Area, Cali 763537, Colombia
[6] Univ Pretoria, Dept Genet, Hatfield Campus, ZA-0028 Pretoria, South Africa
关键词
SEQUENCING REVEALS; IDENTIFICATION; GENES;
D O I
10.1093/nar/gkw298
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Identification of genomic regions associated with a phenotype of interest is a fundamental step toward solving questions in biology and improving industrial research. Bulk segregant analysis (BSA) combined with high-throughput sequencing is a technique to efficiently identify these genomic regions associated with a trait of interest. However, distinguishing true from spuriously linked genomic regions and accurately delineating the genomic positions of these truly linked regions requires the use of complex statistical models currently implemented in software tools that are generally difficult to operate for non-expert users. To facilitate the exploration and analysis of data generated by bulked segregant analysis, we present EXPLoRA-web, a web service wrapped around our previously published algorithm EXPLoRA, which exploits linkage disequilibrium to increase the power and accuracy of quantitative trait loci identification in BSA analysis. EXPLoRA-web provides a user friendly interface that enables easy data upload and parallel processing of different parameter configurations. Results are provided graphically and as BED file and/or text file and the input is expected in widely used formats, enabling straightforward BSA data analysis. The web server is available at http://bioinformatics.intec.ugent.be/explora-web/.
引用
收藏
页码:W142 / W146
页数:5
相关论文
共 50 条
  • [41] Quantitative trait loci analysis of brown blotch resistance in cowpea variety KN1
    Ohlson, Erik W.
    Thio, Gilles I.
    Sawadogo, Mahamadou
    Sereme, Paco
    Timko, Michael P.
    MOLECULAR BREEDING, 2018, 38 (09)
  • [42] Genetic Analysis and Molecular Mapping of Quantitative Trait Loci in Common Bean Against Pythium ultimum
    Campa, Ana
    Perez-Vega, Elena
    Pascual, Aida
    Jose Ferreira, Juan
    PHYTOPATHOLOGY, 2010, 100 (12) : 1315 - 1320
  • [43] Mapping quantitative trait loci and meta-analysis for cold tolerance in rice at booting stage
    Yang, L. M.
    Liu, H. L.
    Zhao, H. W.
    Wang, J. G.
    Sun, J.
    Zheng, H. L.
    Lei, L.
    Zou, D. T.
    EUPHYTICA, 2019, 215 (05)
  • [44] Analysis of Genes Underlying Soybean Quantitative Trait Loci Conferring Partial Resistance to Phytophthora sojae
    Wang, Hehe
    Waller, LaChelle
    Tripathy, Sucheta
    St Martin, Steven K.
    Zhou, Lecong
    Krampis, Konstantinos
    Tucker, Dominic M.
    Mao, Yongcai
    Hoeschele, Ina
    Maroof, M. A. Saghai
    Tyler, Brett M.
    Dorrance, Anne E.
    PLANT GENOME, 2010, 3 (01): : 23 - 40
  • [45] Quantitative Trait Nucleotide Analysis Using Bayesian Model Selection
    Blangero, John
    Goering, Harald H. H.
    Kent, Jack W., Jr.
    Williams, Jeff T.
    Peterson, Charles P.
    Almasy, Laura
    Dyer, Thomas D.
    HUMAN BIOLOGY, 2009, 81 (5-6) : 829 - 847
  • [46] Quantitative trait loci analysis of blast resistance in Oryza sativa L. 'Hokuriku 193'
    Nagaoka, Ichiro
    Sasahara, Hideki
    Tabuchi, Hiroaki
    Shigemune, Akiko
    Matsushita, Kei
    Maeda, Hideo
    Goto, Akitoshi
    Fukuoka, Shuichi
    Ando, Tsuyu
    Miura, Kiyoyuki
    BREEDING SCIENCE, 2017, 67 (02) : 159 - 164
  • [47] Quantitative trait loci analysis of Verticillium wilt resistance in interspecific backcross populations of Gossypium hirsutum x Gossypium barbadense
    Shi, Yuzhen
    Zhang, Baocai
    Liu, Aiying
    Li, Wentan
    Li, Junwen
    Lu, Quanwei
    Zhang, Zhen
    Li, Shaoqi
    Gong, Wankui
    Shang, Haihong
    Gong, Juwu
    Chen, Tingting
    Ge, Qun
    Wang, Tao
    Zhu, Heqin
    Liu, Zhi
    Yuan, Youlu
    BMC GENOMICS, 2016, 17
  • [48] Evaluation of nine statistics to identify QTLs in bulk segregant analysis using next generation sequencing approaches
    de la Fuente Canto, Carla
    Vigouroux, Yves
    BMC GENOMICS, 2022, 23 (01)
  • [49] Discovering metabolite quantitative trait loci in asthma using an isolated population
    Johnson, Randi K.
    Brunetti, Tonya
    Quinn, Kevin
    Doenges, Katrina
    Campbell, Monica
    Arehart, Christopher
    Taub, Margaret A.
    Mathias, Rasika A.
    Reisdorph, Nichole
    Barnes, Kathleen C.
    Daya, Michelle
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2022, 149 (05) : 1807 - +
  • [50] Investigation of SNP markers for the melatonin production trait in the Hu sheep with bulked segregant analysis
    Wu, Hao
    Ma, Wenkui
    Yan, Laiqing
    Liu, Fenze
    Xu, Shang
    Ji, Pengyun
    Gao, Shuai
    Zhang, Lu
    Liu, Guoshi
    BMC GENOMICS, 2023, 24 (01)