Model selection for anomaly detection in wireless ad hoc networks

被引:20
作者
Deng, Hongmei [1 ]
Xu, Roger [1 ]
机构
[1] Intelligent Automat Inc, Rockville, MD 20855 USA
来源
2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2 | 2007年
关键词
D O I
10.1109/CIDM.2007.368922
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection has been actively investigated to enhance the security of wireless ad hoe networks. However, it also presents a difficulty on model determination, such as feature selection and algorithm parameter optimization. In this paper, we address the issue of parameter selection for one-class Support Vector Machine (1-SVM) based anomaly detection. We have investigated the performance of existing approaches, and also proposed a skewness-based outlier generation approach for parameter selection in the 1-SVM based anomaly detection model.
引用
收藏
页码:540 / 546
页数:7
相关论文
共 19 条
[1]  
[Anonymous], J MACHINE LEARNING R
[2]  
[Anonymous], 1999, MSRTR9987
[3]  
Cristianini N., 2000, Intelligent Data Analysis: An Introduction
[4]  
DENG H, 2006, INT C SEC MAN JUN 2
[5]  
DENG H, 2006, 12 INT C PAR DISTR S
[6]   Routing security in wireless ad hoc networks [J].
Deng, HM ;
Li, W ;
Agrawal, DP .
IEEE COMMUNICATIONS MAGAZINE, 2002, 40 (10) :70-75
[7]  
FALL K, 2000, NS MANUAL
[8]  
HUANG Y, 2003, P 23 ITN C DISTR COM
[9]  
JOACHINS T, 2000, 17 INT C MACH LEARN
[10]  
Luban M., 1988, Computers in Physics, V2, P55