Semantic Video Indexing using a probabilistic framework

被引:0
作者
Naphade, MR [1 ]
Huang, TS [1 ]
机构
[1] Univ Illinois, Coordinated Sci Lab, Dept Elect & Comp Engn, Urbana, IL 61801 USA
来源
15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING | 2000年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a probabilistic framework for semantic video indexing. The components of the framework are multijects and multinets. Multijects are probabilistic multimedia objects [6] representing semantic features or concepts. A multinet is a probabilistic network of multijects which accounts for the interaction between concepts. The main contribution of this paper is the application of a graphical probabilistic framework to build the multinet. The multinet enhances the detection performance of individual multijects, provides a unified framework for integrating multiple modalities and supports inference of unobservable concepts based on their relation with observable concepts. We develop multijects for detecting sites (locations) in video and integrate the multijects using multinet in the form of a Bayesian network. Detection performance is significantly improved using the multinet.
引用
收藏
页码:79 / 84
页数:6
相关论文
共 50 条
  • [11] Latent semantic indexing: A probabilistic analysis
    Papadimitriou, CH
    Raghavan, P
    Tamaki, H
    Vempala, S
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2000, 61 (02) : 217 - 235
  • [12] A probabilistic model for Latent Semantic Indexing
    Ding, CHQ
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2005, 56 (06): : 597 - 608
  • [13] Framework for document retrieval using latent semantic indexing
    Phadnis, Neelam
    Gadge, Jayant
    [J]. International Journal of Computers and Applications, 2014, 94 (14) : 37 - 41
  • [14] A generic framework for semantic video indexing based on visual concepts/contexts detection
    Nizar Elleuch
    Anis Ben Ammar
    Adel M. Alimi
    [J]. Multimedia Tools and Applications, 2015, 74 : 1397 - 1421
  • [15] Vocabulary Expansion Using Word Vectors for Video Semantic Indexing
    Inoue, Nakamasa
    Shinoda, Koichi
    [J]. MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 851 - 854
  • [16] Semantic video indexing using context-dependent fusion
    Kim, Dae-Jin
    Frigui, Hichem
    Fadeev, Aleksey
    [J]. MULTIMEDIA CONTENT ACCESS: ALGORITHMS AND SYSTEMS II, 2008, 6820
  • [17] A generic framework for semantic video indexing based on visual concepts/contexts detection
    Elleuch, Nizar
    Ben Ammar, Anis
    Alimi, Adel M.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (04) : 1397 - 1421
  • [18] Efficient Probabilistic Latent Semantic Indexing using Graphics Processing Unit
    Kouassi, Eli Koffi
    Amagasa, Toshiyuki
    Kitagawa, Hiroyuki
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS), 2011, 4 : 382 - 391
  • [19] MOTION DESCRIPTORS FOR SEMANTIC VIDEO INDEXING
    Zampoglou, Markos
    Papadimitriou, Theophilos
    Diamantaras, Konstantinos I.
    [J]. SIGMAP 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA APPLICATION, 2010, : 178 - 184
  • [20] Semantic structures for video data indexing
    Zettsu, K
    Uehara, K
    Tanaka, K
    [J]. ADVANCED MULTIMEDIA CONTENT PROCESSING, 1999, 1554 : 356 - 369