Semantic Video Indexing using a probabilistic framework

被引:0
|
作者
Naphade, MR [1 ]
Huang, TS [1 ]
机构
[1] Univ Illinois, Coordinated Sci Lab, Dept Elect & Comp Engn, Urbana, IL 61801 USA
来源
15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING | 2000年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a probabilistic framework for semantic video indexing. The components of the framework are multijects and multinets. Multijects are probabilistic multimedia objects [6] representing semantic features or concepts. A multinet is a probabilistic network of multijects which accounts for the interaction between concepts. The main contribution of this paper is the application of a graphical probabilistic framework to build the multinet. The multinet enhances the detection performance of individual multijects, provides a unified framework for integrating multiple modalities and supports inference of unobservable concepts based on their relation with observable concepts. We develop multijects for detecting sites (locations) in video and integrate the multijects using multinet in the form of a Bayesian network. Detection performance is significantly improved using the multinet.
引用
收藏
页码:79 / 84
页数:6
相关论文
共 50 条
  • [1] A probabilistic framework for semantic indexing and retrieval in video
    Naphade, MR
    Huang, TS
    2000 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, PROCEEDINGS VOLS I-III, 2000, : 475 - 478
  • [2] A probabilistic framework for semantic video indexing, filtering, and retrieval
    Naphade, MR
    Huang, TS
    IEEE TRANSACTIONS ON MULTIMEDIA, 2001, 3 (01) : 141 - 151
  • [3] Probabilistic semantic video indexing
    Naphade, MR
    Kozintsev, I
    Huang, T
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 967 - 973
  • [4] A Framework for Semantic Video Content Indexing Using Textual Information
    Mansouri, Sadek
    Charhad, Mbarek
    Rekik, Ali
    Zrigui, Mounir
    2018 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA STREAM MINING & PROCESSING (DSMP), 2018, : 107 - 110
  • [5] A factor graph framework for semantic video indexing
    Naphade, MR
    Kozintsev, IV
    Huang, TS
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2002, 12 (01) : 40 - 52
  • [6] A factor graph framework for semantic indexing and retrieval in video
    Kozintsev, MR
    Kozintsev, I
    Huang, TS
    Ramchandran, K
    IEEE WORKSHOP ON CONTENT-BASED ACCESS OF IMAGE AND VIDEO LIBRARIES, PROCEEDINGS, 2000, : 35 - 39
  • [7] A probabilistic framework for spatio-temporal video representation & indexing
    Greenspan, H
    Goldberger, J
    Mayer, A
    COMPUTER VISION - ECCV 2002, PT IV, 2002, 2353 : 461 - 475
  • [8] Semantic video indexing and summarization using subtitles
    Yi, H
    Rajan, D
    Chia, LT
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2004, PT 1, PROCEEDINGS, 2004, 3331 : 634 - 641
  • [9] An NMF-framework for Unifying Posterior Probabilistic Clustering and Probabilistic Latent Semantic Indexing
    Zhang, Zhong-Yuan
    Li, Tao
    Ding, Chris
    Tang, Jie
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (19) : 4011 - 4024
  • [10] Probabilistic latent semantic indexing
    Hofmann, T
    SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 1999, : 50 - 57