共 2 条
Non-asymptotic sub-Gaussian error bounds for hypothesis testing
被引:0
|作者:
Li, Yanpeng
[1
]
Tian, Boping
[1
]
机构:
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
关键词:
Pinskers bound;
KL divergence;
Sub-Gaussian;
Fanos inequality;
D O I:
10.1016/j.spl.2022.109586
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Using the sub-Gaussian norm of the Bernoulli random variable, this paper presents the explicit and informative error lower bounds for binary and multiple hypothesis testing in terms of the KL divergence non-asymptotically. Some numerical comparisons are also demonstrated. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文