Effects of solidification parameters on the growth direction of α phase in directionally solidified Ti-49A1 alloy

被引:12
作者
Fan, Jianglei [1 ,2 ]
Zhang, Chi [1 ]
Wu, Shen [1 ]
Gao, Hongxia [1 ]
Wang, Xiao [3 ]
Guo, Jingjie [4 ]
Fu, Hengzhi [4 ]
机构
[1] Zhengzhou Univ Light Ind, Inst Mech & Elect Engn, Zhengzhou 450002, Henan, Peoples R China
[2] Zhengzhou Univ Light Ind, Henan Key Lab Mech Equipment Intelligent Mfg, Zhengzhou 450002, Henan, Peoples R China
[3] Zhengzhou Univ Light Ind, Sch Energy & Power Engn, Zhengzhou 450002, Henan, Peoples R China
[4] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Intermetallics; Titanium aluminides; Crystal growth; Casting; Microstructure; TIAL/TI3AL LAMELLAR MICROSTRUCTURE; TIAL-SI ALLOYS; MECHANICAL-PROPERTIES; TI-46AL-0.5W-0.5SI ALLOY; ORIENTATION CONTROL; TI-50AL-4NB ALLOY; ALIGNMENT; GAMMA; MO; MICROHARDNESS;
D O I
10.1016/j.intermet.2017.07.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Growth directions (GD) variation of a phase in Ti-49A1 (at.%) alloy with solidification parameters were studied by using directional solidification technology. GD of the primary phase (alpha phase) changed with growth rate (V) and temperature gradient (G). Evolutions of theta (the angle between the preferred growth direction (PG) and heat flow direction (HD) and Psi (the angle between GD and HD) with V and G are presented. By controlling the solidification parameters accurately, the grains of a solidified TiAl alloy can grow with <11<(2)over bar>0> direction or close to this direction during directional solidification, which is beneficial to the lamellar orientation control of TiAl alloys. For present experimental conditions, the feasible solidification condition for the lamellar orientation control of TiAl alloy by the seeding technology is: V = 10 mu m/s similar to 20 mu m/s and G = 10 K/mm similar to 12.1 K/mm.
引用
收藏
页码:113 / 118
页数:6
相关论文
共 46 条
[1]   Modeling concepts for intermetallic titanium aluminides [J].
Appel, F. ;
Clemens, H. ;
Fischer, F. D. .
PROGRESS IN MATERIALS SCIENCE, 2016, 81 :55-124
[2]  
BEWLAY BP, 2016, MAT HIGH TEMP, V33, P1
[3]  
Chen G, 2016, NAT MATER, V15, P876, DOI [10.1038/NMAT4677, 10.1038/nmat4677]
[4]   Effects and mechanism of ultrasonic irradiation on solidification microstructure and mechanical properties of binary TiAl alloys [J].
Chen Ruirun ;
Zheng Deshuang ;
Ma Tengfei ;
Ding Hongsheng ;
Su Yanqing ;
Guo Jingjie ;
Fu Hengzhi .
ULTRASONICS SONOCHEMISTRY, 2017, 38 :120-133
[5]   Formation of TiC/Ti2AlC and α2+γ in in-situ TiAl composites with different solidification paths [J].
Chen, Ruirun ;
Fang, Hongze ;
Chen, Xiaoyu ;
Su, Yanqing ;
Ding, Hongsheng ;
Guo, Jingjie ;
Fu, Hengzhi .
INTERMETALLICS, 2017, 81 :9-15
[6]   Microstructure evolution and mechanical properties of directionally-solidified TiAlNb alloy in different temperature gradients [J].
Chen, Ruirun ;
Dong, Shulin ;
Guo, Jingjie ;
Ding, Hongsheng ;
Su, Yanqing ;
Fu, Hengzhi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 648 :667-675
[7]   Intermetallic titanium aluminides in aerospace applications - processing, microstructure and properties [J].
Clemens, Helmut ;
Mayer, Svea .
MATERIALS AT HIGH TEMPERATURES, 2016, 33 (4-5) :560-570
[8]   Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys [J].
Clemens, Helmut ;
Mayer, Svea .
ADVANCED ENGINEERING MATERIALS, 2013, 15 (04) :191-215
[9]   Lamellar Microstructure Alignment in Ti-47Al Alloy by Electromagnetic Confinement and Directional Solidification Using a Seed [J].
Du, Yujun ;
Shen, Jun ;
Xiong, Yilong ;
Ren, Chunhe ;
Fu, Hengzhi .
JOM, 2015, 67 (06) :1258-1264
[10]   Growth direction of cellular and dendritic interface in a constrained growth condition [J].
Esaka, H ;
Daimon, H ;
Natsume, Y ;
Ohsasa, K ;
Tamura, M .
MATERIALS TRANSACTIONS, 2002, 43 (06) :1312-1317