Integer partitions and exclusion statistics

被引:22
作者
Comtet, Alain [1 ]
Majumdar, Satya N.
Ouvry, Stephane
机构
[1] Univ Paris 11, Lab Phys Theor & modeles Statist, CNRS, YNR 8626, F-91405 Orsay, France
[2] Inst Poincare, F-75005 Paris, France
关键词
D O I
10.1088/1751-8113/40/37/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a combinatorial description of exclusion statistics in terms of minimal difference p partitions. We compute the probability distribution of the number of parts in a random minimal p partition. It is shown that the bosonic point p = 0 is a repulsive fixed point for which the limiting distribution has a Gumbel form. For all positive p, the distribution is shown to be Gaussian.
引用
收藏
页码:11255 / 11269
页数:15
相关论文
共 35 条
[11]   ONE-DIMENSIONAL STATISTICAL-MECHANICS FOR IDENTICAL PARTICLES - THE CALOGERO AND ANYON CASES [J].
DEVEIGY, AD ;
OUVRY, S .
MODERN PHYSICS LETTERS B, 1995, 9 (05) :271-283
[12]   EQUATION OF STATE OF AN ANYON GAS IN A STRONG MAGNETIC-FIELD [J].
DEVEIGY, AD ;
OUVRY, S .
PHYSICAL REVIEW LETTERS, 1994, 72 (05) :600-603
[13]   YANGIAN SYMMETRY OF INTEGRABLE QUANTUM CHAINS WITH LONG-RANGE INTERACTIONS AND A NEW DESCRIPTION OF STATES IN CONFORMAL FIELD-THEORY [J].
HALDANE, FDM ;
HA, ZNC ;
TALSTRA, JC ;
BERNARD, D ;
PASQUIER, V .
PHYSICAL REVIEW LETTERS, 1992, 69 (14) :2021-2025
[14]   FRACTIONAL STATISTICS IN ARBITRARY DIMENSIONS - A GENERALIZATION OF THE PAULI PRINCIPLE [J].
HALDANE, FDM .
PHYSICAL REVIEW LETTERS, 1991, 67 (08) :937-940
[15]  
Hardy GH, 1918, P LOND MATH SOC, V17, P75
[16]  
Isakov S. B., 1994, Modern Physics Letters B, V8, P319, DOI 10.1142/S0217984994000327
[17]   FRACTIONAL STATISTICS IN ONE-DIMENSION - MODELING BY MEANS OF 1/CHI-2 INTERACTION AND STATISTICAL-MECHANICS [J].
ISAKOV, SB .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (15) :2563-2582
[18]   THEORY OF IDENTICAL PARTICLES [J].
LEINAAS, JM ;
MYRHEIM, J .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1977, 37 (01) :1-23
[19]  
Meinardus G., 1954, Math. Z., V61, P289, DOI DOI 10.1007/BF01181347
[20]   3 INTEGRABLE HAMILTONIAN SYSTEMS CONNECTED WITH ISOSPECTRAL DEFORMATIONS [J].
MOSER, J .
ADVANCES IN MATHEMATICS, 1975, 16 (02) :197-220