High-throughput SNP analysis for genetic association studies

被引:1
作者
Marnellos, G [1 ]
机构
[1] Sequenom Inc, Div Pharmaceut, San Diego, CA 92121 USA
关键词
complex diseases; DNA pooling; genetic discovery; linkage disequilibrium; primer extension;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Single nucleotide polymorphisms (SNPs) are the most common type of genetic variation, and millions of SNPs are now documented. Because of their dense distribution across the genome, SNPs are viewed as ideal markers for large-scale genome-wide association studies to discover genes in common complex diseases, such as cancer. To enable such studies, researchers have constructed appropriate sets of SNP markers, by selecting SNPs that are common in major human populations and by charting the patterns of co-occurrence of SNPs, which could further guide marker selection. High-throughput SNP analysis technologies have also been developed, which can analyze thousands of SNPs in thousands of samples. As SNP analysis techniques and SNP marker sets are improving, researchers have begun to carry out large-scale genome scans for disease genes, with encouraging first results.
引用
收藏
页码:317 / 321
页数:5
相关论文
共 50 条
[21]   High-throughput and parallel SNP discovery in selected candidate genes in Eucalyptus camaldulensis using Illumina NGS platform [J].
Hendre, Prasad S. ;
Kamalakannan, R. ;
Varghese, Mohan .
PLANT BIOTECHNOLOGY JOURNAL, 2012, 10 (06) :646-656
[22]   Tag SNP selection for association studies [J].
Stram, DO .
GENETIC EPIDEMIOLOGY, 2004, 27 (04) :365-374
[23]   Analysis of genetic variation in Ashkenazi Jews by high density SNP genotyping [J].
Adam B Olshen ;
Bert Gold ;
Kirk E Lohmueller ;
Jeffery P Struewing ;
Jaya Satagopan ;
Stefan A Stefanov ;
Eleazar Eskin ;
Tomas Kirchhoff ;
James A Lautenberger ;
Robert J Klein ;
Eitan Friedman ;
Larry Norton ;
Nathan A Ellis ;
Agnes Viale ;
Catherine S Lee ;
Patrick I Borgen ;
Andrew G Clark ;
Kenneth Offit ;
Jeff Boyd .
BMC Genetics, 9
[24]   Bayesian Analysis of Rare Variants in Genetic Association Studies [J].
Yi, Nengjun ;
Zhi, Degui .
GENETIC EPIDEMIOLOGY, 2011, 35 (01) :57-69
[25]   SNP2GO: Functional Analysis of Genome-Wide Association Studies [J].
Szkiba, David ;
Kapun, Martin ;
von Haeseler, Arndt ;
Gallach, Miguel .
GENETICS, 2014, 197 (01) :285-289
[26]   High-throughput genotyping in onion reveals structure of genetic diversity and informative SNPs useful for molecular breeding [J].
Villano, Clizia ;
Esposito, Salvatore ;
Carucci, Francesca ;
Iorizzo, Massimo ;
Frusciante, Luigi ;
Carputo, Domenico ;
Aversano, Riccardo .
MOLECULAR BREEDING, 2019, 39 (01)
[27]   Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea [J].
Bajaj, Deepak ;
Das, Shouvik ;
Badoni, Saurabh ;
Kumar, Vinod ;
Singh, Mohar ;
Bansal, Kailash C. ;
Tyagi, Akhilesh K. ;
Parida, Swarup K. .
SCIENTIFIC REPORTS, 2015, 5
[28]   High-throughput genotype-based population structure analysis of selected buffalo breeds [J].
Thakor, Prakash B. ;
Hinsu, Ankit T. ;
Bhatia, Dhruv R. ;
Shah, Tejas M. ;
Nayee, Nilesh ;
Sudhakar, A. ;
Rank, Dharamshibhai N. ;
Joshi, Chaitanya G. .
TRANSLATIONAL ANIMAL SCIENCE, 2021, 5 (02)
[29]   Imputation methods to improve inference in SNP association studies [J].
Dai, James Y. ;
Ruczinski, Ingo ;
LeBlanc, Michael ;
Kooperberg, Charles .
GENETIC EPIDEMIOLOGY, 2006, 30 (08) :690-702
[30]   Optimal selection of SNP markers for disease association studies [J].
Halldórsson, BV ;
Istrail, S ;
De La Vega, FM .
HUMAN HEREDITY, 2004, 58 (3-4) :190-202