Activity-dependent tuning of intrinsic excitability in mouse and human neurogliaform cells

被引:26
|
作者
Chittajallu, Ramesh [1 ]
Auville, Kurt [1 ]
Mahadevan, Vivek [1 ]
Lai, Mandy [1 ]
Hunt, Steven [1 ]
Calvigioni, Daniela [1 ]
Pelkey, Kenneth A. [1 ]
Zaghloul, Kareem A. [2 ]
McBain, Chris J. [1 ]
机构
[1] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, Lab Cellular & Synapt Physiol, NIH, Bethesda, MD 20892 USA
[2] NINDS, Surg Neurol Branch, NIH, Bldg 36,Rm 4D04, Bethesda, MD 20892 USA
来源
ELIFE | 2020年 / 9卷
关键词
GATED K+ CHANNELS; POTASSIUM CHANNELS; INTERNEURONS; PLASTICITY; MODULATION; EXPRESSION; NEURONS; MONKEY; INTEGRATION; MECHANISMS;
D O I
10.7554/eLife.57571
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to modulate the efficacy of synaptic communication between neurons constitutes an essential property critical for normal brain function. Animal models have proved invaluable in revealing a wealth of diverse cellular mechanisms underlying varied plasticity modes. However, to what extent these processes are mirrored in humans is largely uncharted thus questioning their relevance in human circuit function. In this study, we focus on neurogliaform cells, that possess specialized physiological features enabling them to impart a widespread inhibitory influence on neural activity. We demonstrate that this prominent neuronal subtype, embedded in both mouse and human neural circuits, undergo remarkably similar activity-dependent modulation manifesting as epochs of enhanced intrinsic excitability. In principle, these evolutionary conserved plasticity routes likely tune the extent of neurogliaform cell mediated inhibition thus constituting canonical circuit mechanisms underlying human cognitive processing and behavior.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [1] Activity-dependent changes in intrinsic excitability of human spinal motoneurones produced by natural activity
    Rossi, Alessandro
    Rossi, Simone
    Ginanneschi, Federica
    JOURNAL OF NEUROPHYSIOLOGY, 2012, 108 (09) : 2473 - 2480
  • [2] The Emerging Concept of Intrinsic Plasticity: Activity-dependent Modulation of Intrinsic Excitability in Cerebellar Purkinje Cells and Motor Learning
    Shim, Hyun Geun
    Lee, Yong-Seok
    Kim, Sang Jeong
    EXPERIMENTAL NEUROBIOLOGY, 2018, 27 (03) : 139 - 154
  • [3] Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability
    Steinert, Joern R.
    Robinson, Susan W.
    Tong, Huaxia
    Haustein, Martin D.
    Kopp-Scheinpflug, Cornelia
    Forsythe, Ian D.
    NEURON, 2011, 71 (02) : 291 - 305
  • [4] ACTIVITY-DEPENDENT MODULATION OF EXCITABILITY
    BURKE, D
    MILLER, TA
    KIERNAN, MC
    MOGYOROS, I
    MUSCLE & NERVE, 1995, 18 (06) : 675 - 676
  • [5] The mechanisms and functions of activity-dependent long-term potentiation of intrinsic excitability
    Xu, J
    Kang, J
    REVIEWS IN THE NEUROSCIENCES, 2005, 16 (04) : 311 - 323
  • [6] ACTIVITY-DEPENDENT MODULATION OF EXCITABILITY - REPLY
    STYS, PK
    WAXMAN, SG
    MUSCLE & NERVE, 1995, 18 (06) : 676 - 677
  • [7] Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability
    Frohlich, Flavio
    Bazhenov, Maxim
    Timofeev, Igor
    Steriade, Mircea
    Sejnowski, Terrence J.
    JOURNAL OF NEUROSCIENCE, 2006, 26 (23): : 6153 - 6162
  • [8] ACTIVITY-DEPENDENT TUNING AND THE NMDA RECEPTOR
    DEBSKI, EA
    CLINE, HT
    CONSTANTINEPATON, M
    JOURNAL OF NEUROBIOLOGY, 1990, 21 (01): : 18 - &
  • [9] Regulation of intrinsic excitability in hippocampal neurons by activity-dependent modulation of the KV2.1 potassium channel
    Mohapatra, Durga P.
    Misonou, Hiroaki
    Pan, Sheng-Jun
    Held, Joshua E.
    Surmeier, D. James
    Trimmer, James S.
    CHANNELS, 2009, 3 (01) : 46 - 56
  • [10] A sexually dimorphic signature of activity-dependent BDNF signaling on the intrinsic excitability of pyramidal neurons in the prefrontal cortex
    Ma, Kaijie
    Zhang, Daoqi
    McDaniel, Kylee
    Webb, Maria
    Newton, Samuel S.
    Lee, Francis S.
    Qin, Luye
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2024, 18