Multiple positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in RN

被引:3
作者
Lin, Huei-li [1 ]
机构
[1] Chang Gung Univ, Dept Nat Sci, Ctr Gen Educ, Tao Yuan 333, Taiwan
关键词
semilinear elliptic equations; concave and convex; positive solutions; CONCENTRATION-COMPACTNESS PRINCIPLE; EXISTENCE; CALCULUS;
D O I
10.1186/1687-2770-2012-24
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate the effect of the coefficient f(z) of the sub-critical nonlinearity. For sufficiently large lambda > 0, there are at least k + 1 positive solutions of the semilinear elliptic equations {(-Delta nu + lambda nu = f(z)nu p-1 + h(z)nu q-1 in RN;)(nu is an element of H1(RN),) where 1 <= q < 2 < p < 2* = 2N/(N - 2) for N >= 3.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 18 条
[1]  
Adachi S, 2000, CALC VAR PARTIAL DIF, V11, P63, DOI 10.1007/s005260050003
[2]   Multiplicity results for some nonlinear elliptic equations [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) :219-242
[3]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[4]  
[Anonymous], 1990, REV MAT IBEROAM, DOI DOI 10.4171/RMI/92
[5]   On the existence of a positive solution of semilinear elliptic equations in unbounded domains [J].
Bahri, A ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03) :365-413
[6]   The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function [J].
Brown, KJ ;
Zhang, YP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :481-499
[7]  
Cao DM, 1996, P ROY SOC EDINB A, V126, P443
[8]   Local superlinearity and sublinearity for indefinite semilinear elliptic problems [J].
De Figueiredo, DG ;
Gossez, JP ;
Ubilla, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) :452-467
[9]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[10]   Existence of entire positive solutions for nonhomogeneous elliptic equations [J].
Hirano, N .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (08) :889-901