Fabrication and near-field visualization of a wafer-scale dense plasmonic nanostructured array

被引:8
|
作者
Yun, Jungheum [1 ]
Lee, Haemi [2 ]
Mun, ChaeWon [1 ]
Jahng, Junghoon [3 ]
Morrison, William A. [4 ]
Nowak, Derek B. [4 ]
Song, Jung-Hwan [5 ,6 ]
Lim, Dong-Kwon [7 ]
Bae, Tae-Sung [8 ]
Kim, Hyung Min [9 ]
Kim, Nam Hoon [10 ]
Nam, Sang Hwan [10 ]
Kim, Jongwoo [10 ]
Seo, Min-Kyo [5 ,6 ]
Kim, Dong-Ho [1 ]
Park, Sung-Gyu [1 ]
Suh, Yung Doug [2 ,11 ]
机构
[1] Korea Inst Mat Sci, Adv Funct Thin Films Dept, Chang Won 51508, South Korea
[2] KRICT, Res Ctr Convergence NanoRaman Technol, Daejeon 34114, South Korea
[3] Korea Res Inst Stand & Sci, Ctr Nanocharacterizat, Daejeon 34113, South Korea
[4] Mol Vista, San Jose, CA 95119 USA
[5] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea
[6] Korea Adv Inst Sci & Technol, Inst NanoCentury, Daejeon 34141, South Korea
[7] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
[8] Korea Basic Sci Inst, Jeonju Ctr, Jeonju 54907, South Korea
[9] Kookmin Univ, Dept Bio & Nano Chem, Seoul 02707, South Korea
[10] KRICT, Ctr Convergent Res Emerging Virus Infect, Daejeon 34114, South Korea
[11] Sungkyunkwan Univ, Sch Chem Engn, Suwon 16419, South Korea
来源
RSC ADVANCES | 2018年 / 8卷 / 12期
基金
新加坡国家研究基金会;
关键词
ENHANCED RAMAN-SPECTROSCOPY; NANOPARTICLE DIMERS; SURFACE-PLASMONS; SINGLE-MOLECULE; SCATTERING; MICROSCOPY; FILMS; GAP;
D O I
10.1039/c7ra13322g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing a sensor that identifies and quantifies trace amounts of analyte molecules is crucially important for widespread applications, especially in the areas of chemical and biological detection. By non-invasively identifying the vibrational signatures of the target molecules, surface-enhanced Raman scattering (SERS) has been widely employed as a tool for molecular detection. Here, we report on the reproducible fabrication of wafer-scale dense SERS arrays and single-nanogap level near-field imaging of these dense arrays under ambient conditions. Plasmonic nanogaps densely populated the spaces among globular Ag nanoparticles with an areal density of 120 particles per mu m(2) upon application of a nanolithography-free simple process consisting of the Ar plasma treatment of a polyethylene terephthalate substrate and subsequent Ag sputter deposition. The compact nanogaps produced a high SERS enhancement factor of 3.3 x 10(7) and homogeneous (coefficient of variation of 8.1%) SERS response. The local near fields at these nanogaps were visualized using photo-induced force microscopy that simultaneously enabled near-field excitation and near-field force detection under ambient conditions. A high spatial resolution of 3.1 nm was achieved. Taken together, the generation of a large-area SERS array with dense plasmonic nanogaps and the subsequent single-nanogap level characterization of the local near field have profound implications in the nanoplasmonic imaging and sensing applications.
引用
收藏
页码:6444 / 6451
页数:8
相关论文
共 50 条
  • [1] Tunable Single-Photon Emission with Wafer-Scale Plasmonic Array
    Chen, Chun-An
    Chen, Po-Han
    Zheng, Yu-Xiang
    Chen, Chiao-Han
    Hsu, Mong-Kai
    Hsu, Kai-Chieh
    Lai, Ying-Yu
    Chuu, Chih-Sung
    Deng, Hui
    Lee, Yi-Hsien
    NANO LETTERS, 2024, 24 (11) : 3395 - 3403
  • [2] Parallel fabrication of wafer-scale plasmonic metamaterials for nano-optics
    Eslami, S.
    Gibbs, J. G.
    Mark, A. G.
    Lee, T. C.
    Jeong, H. -H
    Kim, I
    Fischer, P.
    ADVANCED FABRICATION TECHNOLOGIES FOR MICRO/NANO OPTICS AND PHOTONICS VIII, 2015, 9374
  • [3] Atomic Response in the Near-Field of Nanostructured Plasmonic Metamaterial
    Aljunid, Syed Abdullah
    Chan, Eng Aik
    Adamo, Giorgio
    Ducloy, Martial
    Wilkowski, David
    Zheludev, Nikolay I.
    NANO LETTERS, 2016, 16 (05) : 3137 - 3141
  • [4] A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars
    Jonker, D.
    Jafari, Z.
    Winczewski, J. P.
    Eyovge, C.
    Berenschot, J. W.
    Tas, N. R.
    Gardeniers, J. G. E.
    De Leon, I.
    Susarrey-Arce, A.
    NANOSCALE ADVANCES, 2021, 3 (17): : 4926 - 4939
  • [5] Wafer-scale Plasmonic and Photonic Crystal Sensors
    George, M. C.
    Liu, J. -N.
    Farhang, A.
    Williamson, B.
    Black, M.
    Wangensteen, T.
    Fraser, J.
    Petrova, R.
    Cunningham, B. T.
    PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES XIII, 2015, 9547
  • [6] TEST VEHICLE FOR A WAFER-SCALE FIELD-PROGRAMMABLE GATE ARRAY
    DUFORT, B
    CHAPMAN, GH
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY PART B-ADVANCED PACKAGING, 1995, 18 (03): : 431 - 437
  • [7] Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field
    Seunghwa Baek
    Gumin Kang
    Min Kang
    Chang-Won Lee
    Kyoungsik Kim
    Scientific Reports, 6
  • [8] Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field
    Baek, Seunghwa
    Kang, Gumin
    Kang, Min
    Lee, Chang-Won
    Kim, Kyoungsik
    SCIENTIFIC REPORTS, 2016, 6
  • [9] Wafer-Scale Fabrication and Encapsulation of Micro Supercapacitor
    Xu, Sixing
    Xia, Fan
    Li, Zhangshanhao
    Wang, Xiaohong
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (03) : 474 - 477
  • [10] Wafer-scale micro-optics fabrication
    Voelkel, Reinhard
    ADVANCED OPTICAL TECHNOLOGIES, 2012, 1 (03) : 135 - 150