SDEs with two reflecting barriers driven by semimartingales and processes with bounded p-variation

被引:3
作者
Falkowski, Adrian [1 ]
Slominski, Leszek [1 ]
机构
[1] Nicolaus Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland
关键词
Stochastic differential equation; Reflecting barriers; Semimartingale; p-variation; Fractional Brownian motion; STOCHASTIC DIFFERENTIAL-EQUATIONS; FRACTIONAL BROWNIAN-MOTION; CONSTRAINTS DRIVEN; UNIQUENESS; EXISTENCE; WEAK; CONVERGENCE; FLUID;
D O I
10.1016/j.spa.2022.01.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the existence, uniqueness and approximation of solutions of general stochastic differential equations (SDEs) with two time-dependent reflecting barriers driven by semimartingales and processes with bounded p-variation, p is an element of [1, 2). We do not assume that the barriers have to be completely separated. Applications to currency option pricing in financial models with fractional Brownian motion and standard Brownian motion are given.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:164 / 186
页数:23
相关论文
共 41 条
  • [1] Reflected rough differential equations
    Aida, Shigeki
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (09) : 3570 - 3595
  • [2] Levy Processes with Two-Sided Reflection
    Andersen, Lars Norvang
    Asmussen, Soren
    Glynn, Peter W.
    Pihlsgard, Mats
    [J]. LEVY MATTERS V: FUNCTIONALS OF LEVY PROCESSES, 2015, 2149 : 67 - 182
  • [3] Finite-horizon optimal investment with transaction costs: construction of the optimal strategies
    Belak, Christoph
    Sass, Joern
    [J]. FINANCE AND STOCHASTICS, 2019, 23 (04) : 861 - 888
  • [4] On the existence of shadow prices
    Benedetti, Giuseppe
    Campi, Luciano
    Kallsen, Jan
    Muhle-Karbe, Johannes
    [J]. FINANCE AND STOCHASTICS, 2013, 17 (04) : 801 - 818
  • [5] An actuarial approach to option pricing under the physical measure and without market assumptions
    Bladt, M
    Rydberg, TH
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 1998, 22 (01) : 65 - 73
  • [6] The Skorokhod problem in a time-dependent interval
    Burdzy, Krzysztof
    Kang, Weining
    Ramanan, Kavita
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (02) : 428 - 452
  • [7] Asymptotic optimal tracking: feedback strategies
    Cai, Jiatu
    Rosenbaum, Mathieu
    Tankov, Peter
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2017, 89 (6-7): : 943 - 966
  • [8] Chitashvili R. J., 1981, Stochastics, V5, P255, DOI 10.1080/17442508108833184
  • [9] Skorohod-Loynes characterizations of queueing, fluid, and inventory processes
    Cooper, WL
    Schmidt, V
    Serfozo, RF
    [J]. QUEUEING SYSTEMS, 2001, 37 (1-3) : 233 - 257
  • [10] On non-continuous Dirichlet processes
    Coquet, F
    Mémin, J
    Slominski, L
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2003, 16 (01) : 197 - 216