Variable Triebel-Lizorkin-Lorentz Spaces Associated to Operators

被引:1
作者
Saibi, Khedoudj [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable exponents; Lorentz spaces; Metric measure; Heat kernel; Maximal characterization; Atomic characterizations; BESOV; HARDY; DISTRIBUTIONS; DECOMPOSITION; INTEGRABILITY; SMOOTHNESS; DUALITY;
D O I
10.1007/s11785-022-01289-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, d, mu) be a space of homogenous type and L be a nonnegative self-adjoint operator on L-2 (X) with heat kernels satisfying Gaussian upper bounds. In this paper, we introduce the variable Triebel-Lizorkin-Lorentz space associated to the operator L on spaces of homogenous type and prove that this space can be characterized via the Peetre maximal functions. Then we establish an atomic decomposition for this space.
引用
收藏
页数:18
相关论文
共 32 条
[21]  
Lizorkin P.I., 1972, STUDIES THEORY DIFFE, V117, P212
[22]  
Lizorkin PI., 1974, Trudy Mat. Inst. Steklov, V131, P158
[23]  
Nikolskii S. M., 1951, Tr. Mat. Inst. Steklova, V38, P244
[24]  
Orlicz W., 1931, STUD MATH, V3, P200
[25]   SPACES OF TRIEBEL-LIZORKIN TYPE [J].
PEETRE, J .
ARKIV FOR MATEMATIK, 1975, 13 (01) :123-130
[26]  
Peetre J, 1976, Duke University Mathematics Series, V1
[27]   Intrinsic Square Function Characterizations of Variable Hardy-Lorentz Spaces [J].
Saibi, Khedoudj .
JOURNAL OF FUNCTION SPACES, 2020, 2021
[28]   SPACES OF DISTRIBUTIONS OF BESOV TYPE ON EUCLIDEAN N-SPACE - DUALITY, INTERPOLATION [J].
TRIEBEL, H .
ARKIV FOR MATEMATIK, 1973, 11 (01) :13-64
[29]   VARIABLE INTEGRAL AND SMOOTH EXPONENT TRIEBEL-LIZORKIN SPACES ASSOCIATED WITH A NON-NEGATIVE SELF-ADJOINT OPERATOR [J].
Xu, Jingshi ;
Yang, Xiaodi .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (02) :405-426
[30]   POINTWISE CHARACTERIZATIONS OF BESOV AND TRIEBEL-LIZORKIN SPACES IN TERMS OF AVERAGES ON BALLS [J].
Yang, Dachun ;
Yuan, Wen .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (11) :7631-7655