Variable Triebel-Lizorkin-Lorentz Spaces Associated to Operators

被引:1
作者
Saibi, Khedoudj [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable exponents; Lorentz spaces; Metric measure; Heat kernel; Maximal characterization; Atomic characterizations; BESOV; HARDY; DISTRIBUTIONS; DECOMPOSITION; INTEGRABILITY; SMOOTHNESS; DUALITY;
D O I
10.1007/s11785-022-01289-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, d, mu) be a space of homogenous type and L be a nonnegative self-adjoint operator on L-2 (X) with heat kernels satisfying Gaussian upper bounds. In this paper, we introduce the variable Triebel-Lizorkin-Lorentz space associated to the operator L on spaces of homogenous type and prove that this space can be characterized via the Peetre maximal functions. Then we establish an atomic decomposition for this space.
引用
收藏
页数:18
相关论文
共 32 条
[1]   Besov spaces with variable smoothness and integrability [J].
Almeida, Alexandre ;
Hasto, Peter .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (05) :1628-1655
[2]  
Besov O.V., 1961, T MAT I STEKLOVA, V60, P42
[3]  
BESOV OV, 1959, DOKL AKAD NAUK SSSR+, V126, P1163
[4]   Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces the case q<1 [J].
Bui, HQ ;
Paluszynski, M ;
Taibleson, M .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (Suppl 1) :837-846
[5]  
Christ M., 1990, C MATH, V60/61, P601
[6]  
Coifman R.R., 1971, LECT NOTES MATH, V242
[7]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[8]   New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications [J].
Duong, XT ;
Yan, LX .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (10) :1375-1420
[9]   Duality of Hardy and BMO spaces associated with operators with heat kernel bounds [J].
Duong, XT ;
Yan, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (04) :943-973
[10]   DECOMPOSITION OF BESOV-SPACES [J].
FRAZIER, M ;
JAWERTH, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (04) :777-799