Variational Data Assimilation Technique in Mathematical Modeling of Ocean Dynamics

被引:8
作者
Agoshkov, V. I. [1 ]
Zalesny, V. B. [1 ]
机构
[1] RAS, Inst Numer Math, Moscow 199333, Russia
基金
俄罗斯基础研究基金会;
关键词
Variational data assimilation; ocean dynamics; mathematical models; numerical algorithms; adjoint equations; multicomponent splitting; World ocean circulation; ENSEMBLE KALMAN FILTER; HYDROTHERMODYNAMICS PROBLEM; NUMERICAL ALGORITHM; OBSERVATIONAL DATA; CIRCULATION; SENSITIVITY; SIMULATION;
D O I
10.1007/s00024-011-0372-5
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Problems of the variational data assimilation for the primitive equation ocean model constructed at the Institute of Numerical Mathematics, Russian Academy of Sciences are considered. The model has a flexible computational structure and consists of two parts: a forward prognostic model, and its adjoint analog. The numerical algorithm for the forward and adjoint models is constructed based on the method of multicomponent splitting. The method includes splitting with respect to physical processes and space coordinates. Numerical experiments are performed with the use of the Indian Ocean and the World Ocean as examples. These numerical examples support the theoretical conclusions and demonstrate the rationality of the approach using an ocean dynamics model with an observed data assimilation procedure.
引用
收藏
页码:555 / 578
页数:24
相关论文
共 50 条
[11]   Variational data assimilation for optimizing boundary conditions in ocean models [J].
K. Kazantseva ;
E. Kazantsev ;
M. A. Tolstykh .
Russian Meteorology and Hydrology, 2015, 40 :383-391
[12]   Optimal boundary discretization by variational data assimilation [J].
Kazantsev, Eugene .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (10) :1231-1259
[13]   A 4D-variational ocean data assimilation application for Santos Basin, Brazil [J].
Fragoso, Mauricio da Rocha ;
de Carvalho, Gabriel Vieira ;
Mendes Soares, Felipe Lobo ;
Faller, Daiane Gracieli ;
de Freitas Assad, Luiz Paulo ;
Toste, Raquel ;
Barbosa Sancho, Livia Maria ;
Passos, Elisa Nobrega ;
Boeck, Carina Stefoni ;
Reis, Bruna ;
Landau, Luiz ;
Arango, Hernan G. ;
Moore, Andrew M. .
OCEAN DYNAMICS, 2016, 66 (03) :419-434
[14]   Numerical Modeling of Marine Circulation with 4D Variational Data Assimilation [J].
Zalesny, Vladimir ;
Agoshkov, Valeriy ;
Shutyaev, Victor ;
Parmuzin, Eugene ;
Zakharova, Natalia .
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (07)
[15]   Strong Solvability of a Variational Data Assimilation Problem for the Primitive Equations of Large-Scale Atmosphere and Ocean Dynamics [J].
Korn, Peter .
JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (03)
[16]   Variational assimilation with covariance matrices of observation data errors for the model of the Baltic Sea dynamics [J].
Agoshkov, Valery I. ;
Parmuzin, Eugene I. ;
Zakharova, Natalia B. ;
Shutyaev, Victor P. .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2018, 33 (03) :149-160
[17]   A temporal sliding procedure for ocean wave variational data assimilation and its application [J].
杨永增 ;
赵伟 ;
滕涌 .
ChineseJournalofOceanologyandLimnology, 2006, (01) :35-41
[18]   A temporal sliding procedure for ocean wave variational data assimilation and its application [J].
Yang Yongzeng ;
Zhao Wei ;
Teng Yong .
Chinese Journal of Oceanology and Limnology, 2006, 24 (1) :35-41
[19]   Four-Dimensional Variational Data Assimilation and Sensitivity of Ocean Model State Variables to Observation Errors [J].
Shutyaev, Victor ;
Zalesny, Vladimir ;
Agoshkov, Valeriy ;
Parmuzin, Eugene ;
Zakharova, Natalia .
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (06)
[20]   Adjoint equations in variational data assimilation problems [J].
Shutyaev, Victor P. .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2018, 33 (02) :137-147