Anisotropic isoparametric hypersurfaces in Euclidean spaces

被引:18
|
作者
Ge, Jianquan [1 ]
Ma, Hui [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Wulff shape; Anisotropic mean curvature; Cartan identity; CONSTANT; STABILITY; SURFACES; THEOREM; UNIQUENESS; GEOMETRY;
D O I
10.1007/s10455-011-9286-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by Nomizu's method and some technical treatment of the asymmetry of the F-Weingarten operator, we obtain a classification of complete anisotropic isoparametric hypersurfaces, i.e., hypersurfaces with constant anisotropic principal curvatures, in Euclidean spaces, which is a generalization of the classical case for isoparametric hypersurfaces in Euclidean spaces. On the other hand, by an example of local anisotropic isoparametric surface constructed by B. Palmer, we find that in general anisotropic isoparametric hypersurfaces have both local and global aspects as in the theory of proper Dupin hypersurfaces, which differs from classical isoparametric hypersurfaces.
引用
收藏
页码:347 / 355
页数:9
相关论文
共 50 条
  • [1] Anisotropic isoparametric hypersurfaces in Euclidean spaces
    Jianquan Ge
    Hui Ma
    Annals of Global Analysis and Geometry, 2012, 41 : 347 - 355
  • [2] A CARTAN TYPE IDENTITY FOR ISOPARAMETRIC HYPERSURFACES IN SYMMETRIC SPACES
    Koike, Naoyuki
    TOHOKU MATHEMATICAL JOURNAL, 2014, 66 (03) : 435 - 454
  • [3] On compact anisotropic Weingarten hypersurfaces in Euclidean space
    Julien Roth
    Abhitosh Upadhyay
    Archiv der Mathematik, 2019, 113 : 213 - 224
  • [4] On compact anisotropic Weingarten hypersurfaces in Euclidean space
    Roth, Julien
    Upadhyay, Abhitosh
    ARCHIV DER MATHEMATIK, 2019, 113 (02) : 213 - 224
  • [5] Rigidity of complete hypersurfaces in the Euclidean space via anisotropic mean curvatures
    da Silva, Jonatan F.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (03): : 971 - 987
  • [6] Stable anisotropic capillary hypersurfaces in a wedge?
    Koiso, Miyuki
    MATHEMATICS IN ENGINEERING, 2023, 5 (02): : 1 - 22
  • [7] Biconservative ideal hypersurfaces in Euclidean spaces
    Deepika
    Arvanitoyeorgos, Andreas
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) : 1147 - 1165
  • [8] Spherical product hypersurfaces in Euclidean spaces
    Buyukkutuk, Sezgin
    Ozturk, Gunay
    TURKISH JOURNAL OF MATHEMATICS, 2024, 48 (05) : 903 - 913
  • [9] Complete hypersurfaces in Euclidean spaces with finite strong total curvature
    do Carmo, Manfredo
    Elbert, Maria Fernanda
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2019, 27 (06) : 1251 - 1279
  • [10] HYPERSURFACES IN EUCLIDEAN SPACES WITH FINITE TOTAL CURVATURE
    Zhu, Peng
    KODAI MATHEMATICAL JOURNAL, 2016, 39 (03) : 552 - 566