Convergence results for compound Poisson distributions and applications to the standard Luria-Delbruck distribution

被引:16
作者
Möhle, M [1 ]
机构
[1] Univ Tubingen, Inst Math, D-72076 Tubingen, Germany
关键词
compound Poisson distribution; continuous Luria-Delbruck distribution; Fourier transform; stable distribution; weak convergence;
D O I
10.1239/jap/1127322016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a scaling for compound Poisson distributions that leads (under certain conditions on the Fourier transform) to a weak convergence result as the parameter of the distribution tends to infinity. We show that the limiting probability measure belongs to the class of stable Cauchy laws with Fourier transfonn t -> exp(-c vertical bar t vertical bar - iat log vertical bar t vertical bar). We apply this convergence result to the standard discrete Luria-Delbruck distribution and derive an integral representation for the corresponding limiting density, as an alternative to that found in a closely related paper of Kepler and Oprea. Moreover, we verify local convergence and we derive an integral representation for the distribution function of the limiting continuous Luria-Delbruck distribution.
引用
收藏
页码:620 / 631
页数:12
相关论文
共 15 条
[1]   A note on the evaluation of fluctuation experiments [J].
Angerer, WP .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2001, 479 (1-2) :207-224
[2]   An explicit representation of the Luria-Delbruck distribution [J].
Angerer, WP .
JOURNAL OF MATHEMATICAL BIOLOGY, 2001, 42 (02) :145-174
[3]  
Bartlett MS., 1978, INTRO STOCHASTIC PRO
[4]  
Bingham N. H., 1987, Regular Variation
[5]  
GRADSHTEYN IS, 2000, TABLES INTEGRALS SER
[6]   COMMENTS ON THE LURIA-DELBRUCK DISTRIBUTION [J].
KEMP, AW .
JOURNAL OF APPLIED PROBABILITY, 1994, 31 (03) :822-828
[7]   Improved inference of mutation rates: I. An integral representation for the Luria-Delbruck distribution [J].
Kepler, TB ;
Oprea, M .
THEORETICAL POPULATION BIOLOGY, 2001, 59 (01) :41-48
[8]   THE DISTRIBUTION OF THE NUMBERS OF MUTANTS IN BACTERIAL POPULATIONS [J].
LEA, DE ;
COULSON, CA .
JOURNAL OF GENETICS, 1949, 49 (03) :264-285
[9]  
Lukacs E, 1970, CHARACTERISTIC FUNCT
[10]  
Luria SE, 1943, GENETICS, V28, P491