The Ore-Sato Theorem and Shift Exponents in the q-Difference Case

被引:4
作者
Du Hao [1 ,2 ]
Li Ziming [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Coboundary; cocycle; q-factorial term; q-hypergeometric term;
D O I
10.1007/s11424-019-8355-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors translate the main results in the paper entitled Multiplicative Decomposition of Multivariate q-Hypergeometric Terms from Chinese into English. The paper is written by Shaoshi Chen, Ruyong Feng, Guofeng Fu and Jing Kang, and published in Journal of Mathematics and Systems Science, 32(8), 1019-1032, 2012. Some minor simplification and modification are made during the translation. Based on the results in the above paper, a special form is derived for q-shift exponents appearing in the q-shift quotients of a q-hypergeometric term.
引用
收藏
页码:271 / 286
页数:16
相关论文
共 8 条
[1]  
Bronstein M., 2005, P 2005 INT S SYMB AL, P68
[2]   A Modified Abramov-Petkovsek Reduction and Creative Telescoping for Hypergeometric Terms [J].
Chen, Shaoshi ;
Huang, Hui ;
Kauers, Manuel ;
Li, Ziming .
PROCEEDINGS OF THE 2015 ACM ON INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'15), 2015, :117-124
[3]  
[陈绍示 Chen Shaoshi], 2012, [系统科学与数学, Journal of Systems Science and Mathematical Sciences], V32, P1019
[4]   Applicability of the q-analogue of Zeilberger's algorithm [J].
Chen, WYC ;
Hou, QH ;
Mu, YP .
JOURNAL OF SYMBOLIC COMPUTATION, 2005, 39 (02) :155-170
[5]  
GELFAND IM, 1992, USP MAT NAUK, V47, P3
[6]   New Bounds for Hypergeometric Creative Telescoping [J].
Huang, Hui .
PROCEEDINGS OF THE 2016 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC 2016), 2016, :279-286
[7]  
Ore O., 1930, J MATH PURE APPL, V9, P311
[8]   THEORY OF PREHOMOGENEOUS VECTOR-SPACES (ALGEBRAIC PART) - THE ENGLISH-TRANSLATION OF SATOS LECTURE FROM SHINTANIS NOTE [J].
SATO, M ;
SHINTANI, T ;
MURO, M .
NAGOYA MATHEMATICAL JOURNAL, 1990, 120 :1-34