Generic primal-dual interior point methods based on a new kernel function

被引:17
作者
El Ghami, M. [1 ]
Roos, C. [2 ]
机构
[1] Univ Bergen, Dept Informat, N-5008 Bergen, Norway
[2] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, NL-2600 GA Delft, Netherlands
关键词
linear optimization; primal-dual interior-point algorithm; large and small-update method;
D O I
10.1051/ro:2008009
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we present a generic primal-dual interior point methods (IPMs) for linear optimization in which the search direction depends on a univariate kernel function which is also used as proximity measure in the analysis of the algorithm. The proposed kernel function does not satisfy all the conditions proposed in [2]. We show that the corresponding large-update algorithm improves the iteration complexity with a factor n(61) when compared with the method based on the use of the classical logarithmic barrier function. For small-update interior point methods the iteration bound is O(root n log (n)(epsilon)), which is currently the best-known bound for primal-dual IPMs.
引用
收藏
页码:199 / 213
页数:15
相关论文
共 16 条
[1]  
Andersen E.D., 1996, Implementation of interior point methods for large scale linear programming, P189
[2]   A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization [J].
Bai, YQ ;
El Ghami, M ;
Roos, C .
SIAM JOURNAL ON OPTIMIZATION, 2004, 15 (01) :101-128
[3]   A primal-dual interior-point method for linear optimization based on a new proximity function [J].
Bai, YQ ;
Roos, C ;
El Ghami, M .
OPTIMIZATION METHODS & SOFTWARE, 2002, 17 (06) :985-1008
[4]   A new efficient large-update primal-dual interior-point method based on a finite barrier [J].
Bai, YQ ;
El Ghami, M ;
Roos, C .
SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (03) :766-782
[5]  
den Hertog D., 1994, Mathematics and its Applications, V277
[6]   PATH-FOLLOWING METHODS FOR LINEAR-PROGRAMMING [J].
GONZAGA, CC .
SIAM REVIEW, 1992, 34 (02) :167-224
[7]  
Megiddo N, 1989, PROGR MATH PROGRAMMI, P131
[8]   INTERIOR PATH FOLLOWING PRIMAL-DUAL ALGORITHMS .1. LINEAR-PROGRAMMING [J].
MONTEIRO, RDC ;
ADLER, I .
MATHEMATICAL PROGRAMMING, 1989, 44 (01) :27-41
[9]  
PENG J, IN PRESS EUR J OPER
[10]  
Peng J., 2001, J. Comput. Technol., V6, P61