Nonlinear flux "concave-convex" problems: a fibering method approach

被引:0
|
作者
Sabina de Lis, Jose C. [1 ,2 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, POB 456, San Cristobal la Laguna 38200, Spain
[2] Univ La Laguna, IUEA, POB 456, San Cristobal la Laguna 38200, Spain
关键词
Variational methods; Minimax methods; Degenerate diffusion; 35J20; 35J70; POSITIVE SOLUTIONS; ELLIPTIC PROBLEM; MULTIPLICITY; EXISTENCE;
D O I
10.1007/s43036-020-00092-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the nonlinear flux problem: where AI, stands for the p -Laplacian operator, 12 c RN is a bounded smooth domain, 2 is a positive parameter and v stands for the outer unit normal at a Q. The exponents q, r are assumed to vary in the concave convex regime 1 <q <p <r while 1 <p <N and r is subcritical r <p*. Our objective here is showing the existence, for every 0 <2 <2, of two different sets of infinitely many solutions of (P). The energy functional associated to the problem exhibits a different sign on each of these sets. The analysis of positive energy solutions involves the so-called fibering method (Drabek and Pohozaev in Proc R Soc Edinb Sect A 127(4):703-726, 1997). Our results have been inspired by similar ones in Garcia-Azorero et al. (J Differ Equ 198(1):91-128, 2004), Garcia-Azorero and Peral (Trans Am Math Soc 323(2):877-895, 1991) and El Hamidi (Commun Pure Appl Anal 3(2):253-265, 2004). This work can be considered as a natural continuation of Sabina de Lis (Differ Equ Appl 3(4):469-486, 2011), Sabina de Lis and Segura de Leon (Adv Nonlinear Stud 15(1):61-90, 2015) and Sabina de Lis and Segura de Leon (Nonlinear Anal 113:283-297, 2015). The main achievement of the latter of these works consisted in showing a global existence result of positive solutions to (P).
引用
收藏
页码:1738 / 1753
页数:16
相关论文
共 50 条
  • [1] Nonlinear flux “concave–convex” problems: a fibering method approach
    José C. Sabina de Lis
    Advances in Operator Theory, 2020, 5 : 1738 - 1753
  • [2] Nonlinear Convective Concave-Convex Problems
    Bai, Yunru
    Papageorgiou, Nikolaos S.
    Zeng, Shengda
    RESULTS IN MATHEMATICS, 2025, 80 (03)
  • [3] Nonlinear concave-convex problems with indefinite weight
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (02) : 291 - 305
  • [4] Positive solutions for nonlinear nonhomogeneous Dirichlet problems with concave-convex nonlinearities
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    POSITIVITY, 2016, 20 (04) : 945 - 979
  • [5] Positive solutions for nonlinear nonhomogeneous Dirichlet problems with concave-convex nonlinearities
    Nikolaos S. Papageorgiou
    Patrick Winkert
    Positivity, 2016, 20 : 945 - 979
  • [6] Quasilinear elliptic problems with concave-convex nonlinearities
    Carvalho, M. L. M.
    da Silva, Edcarlos D.
    Goulart, C.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (06)
  • [7] Nonlinear Convective Concave-Convex ProblemsNonlinear Convective Concave-Convex ProblemsY. Bai et al.
    Yunru Bai
    Nikolaos S. Papageorgiou
    Shengda Zeng
    Results in Mathematics, 2025, 80 (3)
  • [8] Nonlinear Schrödinger equations with concave-convex nonlinearities
    Dong, Xiaojing
    Guo, Qi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 410 : 716 - 736
  • [9] Radial solutions of Dirichlet problems with concave-convex nonlinearities
    Dalbono, Francesca
    Dambrosio, Walter
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (07) : 2720 - 2738
  • [10] On a concave-convex elliptic problem with a nonlinear boundary condition
    Ramos Quoirin, Humberto
    Umezu, Kenichiro
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) : 1833 - 1863