An improved Hardy-Sobolev inequality in W1,p and its application to Schrodinger operators

被引:32
作者
Adimurthi
Esteban, MJ
机构
[1] TIFR Ctr, Bangalore 560012, Karnataka, India
[2] Univ Paris 09, F-75775 Paris, France
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2005年 / 12卷 / 02期
关键词
Hardy inequality; perturbed Schrodinger operators; eigenvalues;
D O I
10.1007/s00030-005-0009-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove new Hardy-like inequalities with optimal potential singularities for functions in W-1,W-p(Omega), where Omega is either bounded or the whole space R-n and also some extensions to arbitrary Riemannian manifolds. We also study the spectrum of perturbed Schrodinger operators for perturbations which are just below the optimality threshold for the corresponding Hardy inequality.
引用
收藏
页码:243 / 263
页数:21
相关论文
共 11 条
[1]  
ADIMURTHI, 2001, IN PRESS P ROYAR SOC
[2]  
ADIMURTHI, IN PRESS COMMUNICATI
[3]  
ADIMURTHI MR, 2001, P AMS, P1
[4]  
BARBATIS G, 2001, SERIES EXPANSION L P
[5]  
BARBATIS G, 2001, UNIFIED APPROACH IMP
[6]   Extremal functions for Hardy's inequality with weight [J].
Brezis, H ;
Marcus, M ;
Shafrir, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 171 (01) :177-191
[7]  
BREZIS H, 1996, PUB LAB ANAL NUM
[8]  
GAZZOLA F, 2001, HARDY INEQUALITIES R
[9]   THE STABILITY AND INSTABILITY OF RELATIVISTIC MATTER [J].
LIEB, EH ;
YAU, HI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (02) :177-213
[10]  
SANDEEP K, 2001, 1 EIGENFUNCTION PERT