Natural frequencies of cracked functionally graded material plates by the extended finite element method

被引:126
作者
Natarajan, S.
Baiz, P. M. [2 ]
Bordas, S. [1 ]
Rabczuk, T. [3 ]
Kerfriden, P.
机构
[1] Cardiff Univ, Cardiff Sch Engn, Inst Mech & Adv Mat Theoret & Computat Mech, Cardiff, S Glam, Wales
[2] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2AZ, England
[3] Bauhaus Univ Weimar, Dept Civil Engn, Weimar, Germany
基金
英国工程与自然科学研究理事会;
关键词
Mindlin plate theory; Vibration; Partition of unity methods; Extended finite element method; VIBRATION ANALYSIS; FLEXURAL VIBRATIONS; RECTANGULAR-PLATES; ACTIVE CONTROL; FGM PLATES; SHEAR; DEFORMATIONS; GROWTH;
D O I
10.1016/j.compstruct.2011.04.007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, the linear free flexural vibration of cracked functionally graded material plates is studied using the extended finite element method. A 4-noded quadrilateral plate bending element based on field and edge consistency requirement with 20 degrees of freedom per element is used for this study. The natural frequencies and mode shapes of simply supported and clamped square and rectangular plates are computed as a function of gradient index, crack length, crack orientation and crack location. The effect of thickness and influence of multiple cracks is also studied. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3082 / 3092
页数:11
相关论文
共 55 条
[1]  
Akbari A, 2010, CMES-COMP MODEL ENG, V65, P27
[2]  
[Anonymous], 1967, DEV MECH
[3]   SPECIAL FINITE-ELEMENT METHODS FOR A CLASS OF 2ND-ORDER ELLIPTIC PROBLEMS WITH ROUGH COEFFICIENTS [J].
BABUSKA, I ;
CALOZ, G ;
OSBORN, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :945-981
[4]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[5]  
2-N
[6]   Generalized finite element method for second-order elliptic operators with Dirichlet boundary conditions [J].
Babuska, Ivo ;
Nistor, Victor ;
Tarfulea, Nicolae .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (01) :175-183
[7]   Enriched Finite Element for Modal Analysis of Cracked Plates [J].
Bachene, M. ;
Tiberkak, R. ;
Rechak, S. ;
Maurice, G. ;
Hachi, B. K. .
DAMAGE AND FRACTURE MECHANICS: FAILURE ANALYSIS OF ENGINEERING MATERIALS AND STRUCTURES, 2009, :463-+
[8]   Vibration analysis of cracked plates using the extended finite element method [J].
Bachene, M. ;
Tiberkak, R. ;
Rechak, S. .
ARCHIVE OF APPLIED MECHANICS, 2009, 79 (03) :249-262
[9]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[10]  
2-S