Genome-Wide Identification and Functional Analysis of Polyamine Oxidase Genes in Maize Reveal Essential Roles in Abiotic Stress Tolerance

被引:10
|
作者
Xi, Yan [1 ]
Hu, Wenjing [1 ]
Zhou, Yue [1 ]
Liu, Xiang [1 ]
Qian, Yexiong [1 ]
机构
[1] Anhui Normal Univ, Coll Life Sci, Anhui Prov Key Lab Conservat & Exploitat Important, Wuhu, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
polyamine oxidases; polyamines; Zea mays L; stress response; functional analysis; HYDROGEN-PEROXIDE; EXPRESSION; GROWTH; SPERMINE; PLANTS; METABOLISM; DEFENSE; FAMILY;
D O I
10.3389/fpls.2022.950064
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Polyamines (PAs) play a critical role in growth and developmental processes and stress responses in plants. Polyamine oxidase (PAO) is a flavin adenine dinucleotide (FAD)-dependent enzyme that plays a major role in PA catabolism. Here, for the first time, PAO genes in maize were screened for the whole genome-wide and nine ZmPAO genes were identified in this study, named as ZmPAO1-9. Based on structural characteristics and a comparison of phylogenetic relationships of PAO gene families from seven representative species, all nine PAO proteins in maize were categorized into three distinct subfamilies. Further, chromosome location and schematic structure revealed an unevenly distribution on chromosomes and evolutionarily conserved structure features of ZmPAO genes in maize, respectively. Furthermore, transcriptome analysis demonstrated that ZmPAO genes showed differential expression patterns at diverse developmental stages of maize, suggesting that these genes may play functional developmental roles in multiple tissues. Further, through qRT-PCR validation, these genes were confirmed to be responsive to heat, drought and salinity stress treatments in three various tissues, indicating their potential roles in abiotic stress responses. Eventually, to verify the biological function of ZmPAO genes, the transgenic Arabidopsis plants overexpressing ZmPAO6 gene were constructed as a typical representative to explore functional roles in plants. The results demonstrated that overexpression of ZmPAO6 can confer enhanced heat tolerance through mediating polyamine catabolism in transgenic Arabidopsis, which might result in reduced H2O2 and MDA accumulation and alleviated chlorophyll degradation under heat stress treatment, indicating that ZmPAO6 may play a crucial role in enhancing heat tolerance of transgenic Arabidopsis through the involvement in various physiological processes. Further, the expression analysis of related genes of antioxidant enzymes including glutathione peroxidase (GPX) and ascorbate peroxidase (APX) demonstrated that ZmPAO6 can enhance heat resistance in transgenic Arabidopsis through modulating heat-induced H2O2 accumulation in polyamine catabolism. Taken together, our results are the first to report the ZmPAO6 gene response to heat stress in plants and will serve to present an important theoretical basis for further unraveling the function and regulatory mechanism of ZmPAO genes in growth, development and adaptation to abiotic stresses in maize.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Genome-wide identification and transcription analysis of soybean carotenoid oxygenase genes during abiotic stress treatments
    Rui-Kai Wang
    Chun-E Wang
    Yun-Yan Fei
    Jun-Yi Gai
    Tuan-Jie Zhao
    Molecular Biology Reports, 2013, 40 : 4737 - 4745
  • [42] Genome-wide identification and transcription analysis of soybean carotenoid oxygenase genes during abiotic stress treatments
    Wang, Rui-Kai
    Wang, Chun-E
    Fei, Yun-Yan
    Gai, Jun-Yi
    Zhao, Tuan-Jie
    MOLECULAR BIOLOGY REPORTS, 2013, 40 (08) : 4737 - 4745
  • [43] Genome-wide identification and expression analysis of CaM/CML genes in Brassica napus under abiotic stress
    He, Xin
    Liu, Wei
    Li, Wenqian
    Liu, Yan
    Wang, Weiping
    Xie, Pan
    Kang, Yu
    Liao, Li
    Qian, Lunwen
    Liu, Zhongsong
    Guan, Chunyun
    Guan, Mei
    Hua, Wei
    JOURNAL OF PLANT PHYSIOLOGY, 2020, 255
  • [44] Genome-Wide Identification of NDPK Family Genes and Expression Analysis under Abiotic Stress in Brassica napus
    Wang, Long
    Zhao, Zhi
    Li, Huaxin
    Pei, Damei
    Huang, Zhen
    Wang, Hongyan
    Xiao, Lu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [45] Genome-wide identification of the soybean cytokinin oxidase/dehydrogenase gene family and its diverse roles in response to multiple abiotic stress
    Du, Yanli
    Zhang, Zhaoning
    Gu, Yanhua
    Li, Weijia
    Wang, Weiyu
    Yuan, Xiankai
    Zhang, Yuxian
    Yuan, Ming
    Du, Jidao
    Zhao, Qiang
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [46] Identification of Candidate Genes for Drought Tolerance at Maize Seedlings Using Genome-Wide Association
    Liu, Wenping
    Li, Shufang
    Zhang, Chunxiao
    Jin, Fengxue
    Li, Wanjun
    Li, Xiaohui
    IRANIAN JOURNAL OF BIOTECHNOLOGY, 2021, 19 (03) : 78 - 87
  • [47] Genome-Wide Identification of Barley ABC Genes and Their Expression in Response to Abiotic Stress Treatment
    Zhang, Ziling
    Tong, Tao
    Fang, Yunxia
    Zheng, Junjun
    Zhang, Xian
    Niu, Chunyu
    Li, Jia
    Zhang, Xiaoqin
    Xue, Dawei
    PLANTS-BASEL, 2020, 9 (10): : 1 - 16
  • [48] Genome-Wide Identification and Expression Analysis Under Abiotic Stress of the Lipoxygenase Gene Family in Maize (Zea mays)
    Li, Sinan
    Hou, Shuai
    Sun, Yuanqing
    Sun, Minghao
    Sun, Yan
    Li, Xin
    Li, Yunlong
    Wang, Luyao
    Cai, Quan
    Guo, Baitao
    Zhang, Jianguo
    GENES, 2025, 16 (01)
  • [49] Genome-Wide Identification and Characterization of Tea SGR Family Members Reveal Their Potential Roles in Chlorophyll Degradation and Stress Tolerance
    Ren, Hengze
    Yu, Yating
    Huang, Chao
    Li, Danying
    Ni, Jiale
    Lv, Wuyun
    Wei, Kang
    Wang, Liyuan
    Wang, Yuchun
    AGRONOMY-BASEL, 2024, 14 (04):
  • [50] Genome-Wide Identification and Characterisation of Wheat MATE Genes Reveals Their Roles in Aluminium Tolerance
    Duan, Wenjing
    Lu, Fengkun
    Cui, Yue
    Zhang, Junwei
    Du, Xuan
    Hu, Yingkao
    Yan, Yueming
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (08)