Inferring Multiobjective Phylogenetic Hypotheses by Using a Parallel Indicator-Based Evolutionary Algorithm

被引:0
作者
Santander-Jimenez, Sergio [1 ]
Vega-Rodriguez, Miguel A. [1 ]
机构
[1] Univ Extremadura, Escuela Politecn, Dept Technol Comp & Commun, Caceres 10003, Spain
来源
THEORY AND PRACTICE OF NATURAL COMPUTING (TPNC 2014) | 2014年 / 8890卷
关键词
Applications of Natural Computing; Parallel Computing; Indicator-Based Evolutionary Algorithm; Phylogenetic Inference; GENETIC ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The application of multiobjective optimization techniques to solve biological problems has significantly grown in the last years. In order to generate satisfying approximations to the Pareto-optimal set, two key problems must be addressed. Firstly, we must distinguish solution quality in accordance with the optimization goal, usually measured by means of multiobjective quality indicators. Secondly, we must undertake the development of parallel designs to carry out searches over exponentially growing solution spaces. This work tackles the reconstruction of phylogenetic relationships by applying an Indicator-Based Evolutionary Algorithm. For this purpose, we propose a parallel design based on OpenMP which considers the computation of hypervolume-based indicators in fitness assignment procedures. Experiments on four biological data sets show significant results in terms of parallel scalability and multiobjective performance with regard to other methods from the literature.
引用
收藏
页码:205 / 217
页数:13
相关论文
共 16 条
[1]  
[Anonymous], 2011, INT ENCY STAT SCI
[2]   Computational grand challenges in assembling the tree of life: Problems and solutions [J].
Bader, David A. ;
Roshan, Usman ;
Stamatakis, Alexandros .
ADVANCES IN COMPUTERS , VOL 68: COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2006, 68 :127-176
[3]  
Cancino W, 2010, LECT NOTES COMPUT SC, V6023, P26, DOI 10.1007/978-3-642-12211-8_3
[4]  
Coello CarlosA., 2010, Advances in Multi-Objective Nature Inspired Computing
[5]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[6]  
Fogel G. B., 2005, IEEE CONNECTIONS, V3, P11
[7]   Progressive tree neighborhood applied to the Maximum Parsimony problem [J].
Goeffon, Adrien ;
Richer, Jean-Michel ;
Hao, Jin-Kao .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2008, 5 (01) :136-145
[8]   TNT, a free program for phylogenetic analysis [J].
Goloboff, Pablo A. ;
Farris, James S. ;
Nixon, Kevin C. .
CLADISTICS, 2008, 24 (05) :774-786
[9]   Bio plus plus : Efficient Extensible Libraries and Tools for Computational Molecular Evolution [J].
Gueguen, Laurent ;
Gaillard, Sylvain ;
Boussau, Bastien ;
Gouy, Manolo ;
Groussin, Mathieu ;
Rochette, Nicolas C. ;
Bigot, Thomas ;
Fournier, David ;
Pouyet, Fanny ;
Cahais, Vincent ;
Bernard, Aurelien ;
Scornavacca, Celine ;
Nabholz, Benoit ;
Haudry, Annabelle ;
Dachary, Loic ;
Galtier, Nicolas ;
Belkhir, Khalid ;
Dutheil, Julien Y. .
MOLECULAR BIOLOGY AND EVOLUTION, 2013, 30 (08) :1745-1750
[10]  
Lemey P, 2009, PHYLOGENETIC HANDBOOK: A PRACTICAL APPROACH TO PHYLOGENETIC ANALYSIS AND HYPOTHESIS TESTING, 2ND EDITION, P1