The size order of the state vector of discrete-time homogeneous Markov systems

被引:8
作者
Kipouridis, I [1 ]
Tsaklidis, G [1 ]
机构
[1] Aristotelian Univ Salonika, Dept Math, GR-54006 Salonika, Greece
关键词
stochastic population systems; homogeneous Markov systems; discrete time;
D O I
10.1017/S0021900200019902
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The size order problem of the probability state vector elements of a homogeneous Markov system is examined. The time ro is evaluated, after which the order of the state vector probabilities remains unchanged, and a formula to quickly find a lower bound for to is given. A formula for approximating the mode of the state sizes n(i) (t) as a function of the means En(i) (t), and a relation to evaluate P(n(i) (t) = x + 1) by means of certain terms which constitute P(n(i) (t) = x) are derived.
引用
收藏
页码:357 / 368
页数:12
相关论文
共 15 条
[1]  
Bartholomew DJ, 1982, STOCHASTIC MODELS SO
[2]  
Bartholomew DJ., 1991, STAT TECHNIQUES MANP
[3]  
Gantmacher F.R., 1977, The Theory of Matrices
[4]   RATE OF CONVERGENCE OF CERTAIN NONHOMOGENEOUS MARKOV-CHAINS [J].
HUANG, C ;
ISAACSON, D ;
VINOGRADE, B .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 35 (02) :141-146
[5]  
Isaacson D. L., 1976, MARKOV CHAINS THEORY
[6]   2-STAGE MODEL OF PERSONNEL BEHAVIOR [J].
MCCLEAN, S .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1976, 139 :205-217
[7]  
McClean S.I., 1986, SEMIMARKOV MODELS TH
[8]   CONTINUOUS-TIME STOCHASTIC-MODELS OF A MULTIGRADE POPULATION [J].
MCCLEAN, SI .
JOURNAL OF APPLIED PROBABILITY, 1978, 15 (01) :26-37
[9]   ON USE OF DIRECT MATRIX PRODUCT IN ANALYSING CERTAIN STOCHASTIC POPULATION MODELS [J].
POLLARD, JH .
BIOMETRIKA, 1966, 53 :397-+