Dynamics in piecewise linear and continuous models of complex switching networks

被引:6
作者
Shahrear, Pabel [1 ]
Glass, Leon [1 ]
Wilds, Roy [2 ]
Edwards, Rod [3 ]
机构
[1] McGill Univ, Dept Physiol, Montreal, PQ H3G 1Y6, Canada
[2] Rugged Data, Ottawa, ON, Canada
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Piecewise linear equations; Chaotic dynamics; Genetic networks; MATHEMATICAL-MODELS; REGULATORY NETWORKS; LIMIT-CYCLES; OSCILLATIONS;
D O I
10.1016/j.matcom.2013.12.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Activities of genes are controlled in a combinatorial fashion by the concentrations of chemical called transcription factors. We model this type of network by piecewise linear differential equations formed by embedding a logical switching network in a differential equation. We generate continuous nonlinear equations by replacing the step function discontinuities in the piecewise linear equations by sigmoidal control functions. As the sigmoidal functions become steep, the continuous equations approach piecewise linear differential equations. We carry out numerical studies of the continuous and piecewise linear equations for a 4-dimensional example with particularly interesting and complex behavior, showing that the dynamics in the continuous equation approaches those in the piecewise linear equation as the sigmoids become steep. (C) 2013 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 39
页数:7
相关论文
共 22 条
[1]   Introduction to Focus Issue: Quantitative approaches to genetic networks [J].
Albert, Reka ;
Collins, James J. ;
Glass, Leon .
CHAOS, 2013, 23 (02)
[2]   Dynamical modeling and analysis of large cellular regulatory networks [J].
Berenguier, D. ;
Chaouiya, C. ;
Monteiro, P. T. ;
Naldi, A. ;
Remy, E. ;
Thieffry, D. ;
Tichit, L. .
CHAOS, 2013, 23 (02)
[3]   Robustness and fragility of Boolean models for genetic regulatory networks [J].
Chaves, M ;
Albert, R ;
Sontag, ED .
JOURNAL OF THEORETICAL BIOLOGY, 2005, 235 (03) :431-449
[4]  
Doedel E.J., 2006, AUTO07P CONC U
[5]   Analysis of continuous-time switching networks [J].
Edwards, R .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 146 (1-4) :165-199
[6]  
Edwards R., 2001, Differential Equations Dynam. Systems, V9, P187
[7]   Explicit construction of chaotic attractors in Glass networks [J].
Edwards, Roderick ;
Farcot, Etienne ;
Foxall, Eric .
CHAOS SOLITONS & FRACTALS, 2012, 45 (05) :666-680
[8]   Architecture of the human regulatory network derived from ENCODE data [J].
Gerstein, Mark B. ;
Kundaje, Anshul ;
Hariharan, Manoj ;
Landt, Stephen G. ;
Yan, Koon-Kiu ;
Cheng, Chao ;
Mu, Xinmeng Jasmine ;
Khurana, Ekta ;
Rozowsky, Joel ;
Alexander, Roger ;
Min, Renqiang ;
Alves, Pedro ;
Abyzov, Alexej ;
Addleman, Nick ;
Bhardwaj, Nitin ;
Boyle, Alan P. ;
Cayting, Philip ;
Charos, Alexandra ;
Chen, David Z. ;
Cheng, Yong ;
Clarke, Declan ;
Eastman, Catharine ;
Euskirchen, Ghia ;
Frietze, Seth ;
Fu, Yao ;
Gertz, Jason ;
Grubert, Fabian ;
Harmanci, Arif ;
Jain, Preti ;
Kasowski, Maya ;
Lacroute, Phil ;
Leng, Jing ;
Lian, Jin ;
Monahan, Hannah ;
O'Geen, Henriette ;
Ouyang, Zhengqing ;
Partridge, E. Christopher ;
Patacsil, Dorrelyn ;
Pauli, Florencia ;
Raha, Debasish ;
Ramirez, Lucia ;
Reddy, Timothy E. ;
Reed, Brian ;
Shi, Minyi ;
Slifer, Teri ;
Wang, Jing ;
Wu, Linfeng ;
Yang, Xinqiong ;
Yip, Kevin Y. ;
Zilberman-Schapira, Gili .
NATURE, 2012, 489 (7414) :91-100
[9]  
GLASS L, 1978, B MATH BIOL, V40, P27
[10]   STABLE OSCILLATIONS IN MATHEMATICAL-MODELS OF BIOLOGICAL-CONTROL SYSTEMS [J].
GLASS, L ;
PASTERNACK, JS .
JOURNAL OF MATHEMATICAL BIOLOGY, 1978, 6 (03) :207-223