Model Order Reduction of Nonlinear Transmission Lines Using Interpolatory Proper Orthogonal Decomposition

被引:7
|
作者
Nouri, Behzad [1 ]
Nakhla, Michel S. [1 ]
机构
[1] Carleton Univ, Dept Elect, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Interpolation space; model order reduction (MOR); nonlinear transmission line (NLTL); orthogonal basis; proper orthogonal decomposition (POD); singular-value decomposition (SVD); MISSING POINT ESTIMATION; GENERATION; SIMULATION;
D O I
10.1109/TMTT.2018.2880759
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new method is presented for simulation of nonlinear transmission line circuits based on proper orthogonal decomposition reduction techniques coupled with an efficient interpolatory algorithm. Evaluation of the nonlinear function and corresponding Jacobian is performed in the reduced domain. A key criterion is developed for a priori determination of the dimension of the interpolation space leading to a substantial reduction in the computational cost. The proposed algorithm is applicable to general nonlinear circuits and does not impose any constraints on the topology of the pertinent circuit or type of the nonlinear components.
引用
收藏
页码:5429 / 5438
页数:10
相关论文
共 50 条
  • [1] Interpolatory proper order decomposition of nonlinear transmission line circuits
    Condon, Marissa
    Hayes, Brendan
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2023, 42 (02) : 605 - 619
  • [2] Nonlinear Model Order Reduction of Burgers' Equation Using Proper Orthogonal Decomposition
    Abbasi, Farshid
    Mohammadpour, Javad
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 583 - 588
  • [3] Proper Orthogonal Decomposition Model Order Reduction of Nonlinear IC Models
    Verhoeven, A.
    Striebel, M.
    Rommes, J.
    ter Maten, E. J. W.
    Bechtold, T.
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2008, 2010, 15 : 441 - +
  • [4] NONLINEAR MODEL REDUCTION USING GROUP PROPER ORTHOGONAL DECOMPOSITION
    Dickinson, Benjamin T.
    Singler, John R.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2010, 7 (02) : 356 - 372
  • [5] Nonlinear Model Order Reduction via Lifting Transformations and Proper Orthogonal Decomposition
    Kramer, Boris
    Willcox, Karen E.
    AIAA JOURNAL, 2019, 57 (06) : 2297 - 2307
  • [6] Model Order Reduction of Nonlinear Circuit using Proper Orthogonal Decomposition and Nonlinear Autoregressive with eXogenous input (NARX) Neural Network
    Nagaraj, S.
    Seshachalam, D.
    Hucharaddi, Sunil
    PROCEEDINGS OF THE 2018 16TH ACM/IEEE INTERNATIONAL CONFERENCE ON FORMAL METHODS AND MODELS FOR SYSTEM DESIGN (MEMOCODE), 2018, : 47 - 50
  • [7] Nonlinear aeroelasticity modeling using a reduced order model based on proper orthogonal decomposition
    Feng, Zhengkun
    Soulaimani, Azzeddine
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE 2007, VOL 4: FLUID-STRUCTURE INTERACTION, 2008, : 3 - 10
  • [8] Model order reduction of nonlinear parabolic PDE systems with moving boundaries using sparse proper orthogonal decomposition methodology
    Sidhu, Harwinder Singh
    Narasingam, Abhinav
    Kwon, Joseph Sangil
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 6421 - 6426
  • [9] Model Order Reduction by Balanced Proper Orthogonal Decomposition and by Rational Interpolation
    Opmeer, Mark R.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (02) : 472 - 477
  • [10] Proper Orthogonal Decomposition for Order Reduction of Permanent Magnet Machine Model
    Farzamfar, M.
    Rasilo, P.
    Martin, F.
    Belahcen, A.
    2015 18TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2015, : 1945 - 1949