Direct, prediction- and smoothing-based Kalman and particle filter algorithms

被引:21
作者
Desbouvries, Francois [1 ,2 ]
Petetin, Yohan [1 ,2 ]
Ait-El-Fquih, Boujemaa [3 ,4 ]
机构
[1] Telecom Inst Telecom SudParis CITI Dpt, F-91011 Evry, France
[2] CNRS, UMR 5157, F-91011 Evry, France
[3] IMS Bordeaux Equipe Signal & Image, F-33405 Talence, France
[4] CNRS, UMR 5218, F-33405 Talence, France
关键词
Kalman filters; Sequential Monte Carlo; Particle filtering; Sequential importance sampling; Sampling importance resampling; BOOTSTRAP;
D O I
10.1016/j.sigpro.2011.03.013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We address the recursive computation of the filtering probability density function (pdf) P-n vertical bar n in a hidden Markov chain (HMC) model. We first observe that the classical path p(n-1 vertical bar n-1)-> p(n vertical bar n-1)-> p(n vertical bar n) is not the only possible one that enables to compute p(n vertical bar n) recursively, and we explore the direct, prediction-based (P-based) and smoothing-based (S-based) recursive loops for computing P-n vertical bar n. We next propose a common methodology for computing these equations in practice. Since each path can be decomposed into an updating step and a propagation step, in the linear Gaussian case these two steps are implemented by Gaussian transforms, and in the general case by elementary simulation techniques. By proceeding this way we routinely obtain in parallel, for each filtering path, one set of Kalman filter (KF) equations and one generic sequential Monte Carlo (SMC) algorithm. Finally we classify in a common framework four KF (two of which are original), which themselves can be associated to four generic SMC algorithms (two of which are original). We finally compare our algorithms via simulations. S-based filters behave better than P-based ones, and within each class filters better results are obtained when updating precedes propagation. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2064 / 2077
页数:14
相关论文
共 33 条
  • [1] On Bayesian Fixed-Interval Smoothing Algorithms
    Ait-El-Fquih, Boujemaa
    Desbouvries, Francois
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (10) : 2437 - 2442
  • [2] Anderson B.D.O., 1979, Optimal Filtering
  • [3] [Anonymous], 2009, Probability and Mathematical Statistics
  • [4] [Anonymous], P IEEE NONL STAT SIG
  • [5] [Anonymous], 1995, LECT NOTES STAT
  • [6] [Anonymous], 2004, Beyond the Kalman Filter: Particle Filters for Tracking Applications
  • [7] A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    Arulampalam, MS
    Maskell, S
    Gordon, N
    Clapp, T
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 174 - 188
  • [8] CAPPE O, 2005, SPR S STAT, P1
  • [9] Particle filtering
    Djuric, PM
    Kotecha, JH
    Zhang, JQ
    Huang, YF
    Ghirmai, T
    Bugallo, MF
    Míguez, J
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2003, 20 (05) : 19 - 38
  • [10] Douc R., 2005, P 4 INT S IM SIGN PR