Plasmonic Waveguides: Enhancing Quantum Electrodynamic Phenomena at Nanoscale

被引:1
作者
Li, Ying [1 ]
Argyropoulos, Christos [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Phys & Optoelect Engn, Nanjing 210044, Peoples R China
[2] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
Green's function methods; Plasmons; Spontaneous emission; Elementary particle vacuum; Electromagnetics; Electrodynamics; Mathematical model; LOCAL-FIELD PROBLEM; SPONTANEOUS-EMISSION; QUANTIZATION; ENHANCEMENT; NANOWIRES; LIGHT;
D O I
10.1109/MAP.2021.3099724
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The emerging field of plasmonics may lead to enhanced light-matter interactions at extremely nanoscale regions. Plasmonic (metallic) devices promise to efficiently control classical and quantum properties of light. Plasmonic waveguides are usually employed to excite confined electromagnetic modes at nanoscale that can strongly interact with matter. Analysis shows that nanowaveguides share similarities with their low-frequency microwave counterparts. In this article, we review ways to study plasmonic nanostructures coupled to quantum optical emitters from a classical electromagnetic perspective. Quantum emitters are mainly used to generate single-photon quantum light that can be employed as a quantum bit, or 'qubit,' in envisioned quantum information technologies. We demonstrate different ways to enhance a diverse range of quantum electrodynamic phenomena based on plasmonic configurations by using the Green's function formalism, a classical dyadic tensor. More specifically, spontaneous emission and superradiance are analyzed through Green's function-based field quantization. The exciting new field of quantum plasmonics could lead to a plethora of novel optical devices for communications and computing applications in the quantum realm, such as efficient single-photon sources, quantum sensors, and compact on-chip nanophotonic circuits. © 1990-2011 IEEE.
引用
收藏
页码:14 / 25
页数:12
相关论文
共 97 条
[41]   Entanglement of Two Qubits Mediated by One-Dimensional Plasmonic Waveguides [J].
Gonzalez-Tudela, A. ;
Martin-Cano, D. ;
Moreno, E. ;
Martin-Moreno, L. ;
Tejedor, C. ;
Garcia-Vidal, F. J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (02)
[42]   Plasmonics beyond the diffraction limit [J].
Gramotnev, Dmitri K. ;
Bozhevolnyi, Sergey I. .
NATURE PHOTONICS, 2010, 4 (02) :83-91
[43]   Coherent emission of light by thermal sources [J].
Greffet, JJ ;
Carminati, R ;
Joulain, K ;
Mulet, JP ;
Mainguy, SP ;
Chen, Y .
NATURE, 2002, 416 (6876) :61-64
[44]   Green-function approach to the radiation-held quantization for homogeneous and inhomogeneous Kramers-Kronig dielectrics [J].
Gruner, T ;
Welsch, DG .
PHYSICAL REVIEW A, 1996, 53 (03) :1818-1829
[45]   Aspects of Quantum Electrodynamics Compared to the Classical Case: Similarity and Disparity of Quantum and Classical Electromagnetics [J].
Hanson, George W. .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2020, 62 (04) :16-26
[46]   Quantum plasmonic excitation in graphene and loss-insensitive propagation [J].
Hanson, George W. ;
Gangaraj, S. A. Hassani ;
Lee, Changhyoup ;
Angelakis, Dimitris G. ;
Tame, Mark .
PHYSICAL REVIEW A, 2015, 92 (01)
[47]   Ultrafast spontaneous emission source using plasmonic nanoantennas [J].
Hoang, Thang B. ;
Akselrod, Gleb M. ;
Argyropoulos, Christos ;
Huang, Jiani ;
Smith, David R. ;
Mikkelsen, Maiken H. .
NATURE COMMUNICATIONS, 2015, 6
[48]   Weak and strong coupling regimes in plasmonic QED [J].
Huemmer, T. ;
Garcia-Vidal, F. J. ;
Martin-Moreno, L. ;
Zueco, D. .
PHYSICAL REVIEW B, 2013, 87 (11)
[49]   Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures [J].
Jun, Y. C. ;
Kekatpure, R. D. ;
White, J. S. ;
Brongersma, M. L. .
PHYSICAL REVIEW B, 2008, 78 (15)
[50]   Quantum memory and quantum computations in the optical subradiance regime [J].
Kalachev, AA ;
Samartsev, VV .
QUANTUM ELECTRONICS, 2005, 35 (08) :679-682