Plasmonic Waveguides: Enhancing Quantum Electrodynamic Phenomena at Nanoscale

被引:1
作者
Li, Ying [1 ]
Argyropoulos, Christos [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Phys & Optoelect Engn, Nanjing 210044, Peoples R China
[2] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
Green's function methods; Plasmons; Spontaneous emission; Elementary particle vacuum; Electromagnetics; Electrodynamics; Mathematical model; LOCAL-FIELD PROBLEM; SPONTANEOUS-EMISSION; QUANTIZATION; ENHANCEMENT; NANOWIRES; LIGHT;
D O I
10.1109/MAP.2021.3099724
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The emerging field of plasmonics may lead to enhanced light-matter interactions at extremely nanoscale regions. Plasmonic (metallic) devices promise to efficiently control classical and quantum properties of light. Plasmonic waveguides are usually employed to excite confined electromagnetic modes at nanoscale that can strongly interact with matter. Analysis shows that nanowaveguides share similarities with their low-frequency microwave counterparts. In this article, we review ways to study plasmonic nanostructures coupled to quantum optical emitters from a classical electromagnetic perspective. Quantum emitters are mainly used to generate single-photon quantum light that can be employed as a quantum bit, or 'qubit,' in envisioned quantum information technologies. We demonstrate different ways to enhance a diverse range of quantum electrodynamic phenomena based on plasmonic configurations by using the Green's function formalism, a classical dyadic tensor. More specifically, spontaneous emission and superradiance are analyzed through Green's function-based field quantization. The exciting new field of quantum plasmonics could lead to a plethora of novel optical devices for communications and computing applications in the quantum realm, such as efficient single-photon sources, quantum sensors, and compact on-chip nanophotonic circuits. © 1990-2011 IEEE.
引用
收藏
页码:14 / 25
页数:12
相关论文
共 97 条
  • [1] Generation of single optical plasmons in metallic nanowires coupled to quantum dots
    Akimov, A. V.
    Mukherjee, A.
    Yu, C. L.
    Chang, D. E.
    Zibrov, A. S.
    Hemmer, P. R.
    Park, H.
    Lukin, M. D.
    [J]. NATURE, 2007, 450 (7168) : 402 - 406
  • [2] Efficient Nanosecond Photoluminescence from Infrared PbS Quantum Dots Coupled to Plasmonic Nanoantennas
    Akselrod, Gleb M.
    Weidman, Mark C.
    Li, Ying
    Argyropoulos, Christos
    Tisdale, William A.
    Mikkelsen, Maiken H.
    [J]. ACS PHOTONICS, 2016, 3 (10): : 1741 - 1746
  • [3] Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors
    Akselrod, Gleb M.
    Ming, Tian
    Argyropoulos, Christos
    Hoang, Thang B.
    Lin, Yuxuan
    Ling, Xi
    Smith, David R.
    Kong, Jing
    Mikkelsen, Maiken H.
    [J]. NANO LETTERS, 2015, 15 (05) : 3578 - 3584
  • [4] Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/nphoton.2014.228, 10.1038/NPHOTON.2014.228]
  • [5] Anger Pascal, 2006, Phys Rev Lett, V96, P113002
  • [6] [Anonymous], 2015, COLLECTIVE PLASMON M
  • [7] Temporal soliton excitation in an ε-near-zero plasmonic metamaterial
    Argyropoulos, C.
    Chen, P. -Y.
    D'Aguanno, G.
    Alu, A.
    [J]. OPTICS LETTERS, 2014, 39 (19) : 5566 - 5569
  • [8] Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial
    Argyropoulos, Christos
    D'Aguanno, Giuseppe
    Alu, Andrea
    [J]. PHYSICAL REVIEW B, 2014, 89 (23)
  • [9] Purcell factor for a point-like dipolar emitter coupled to a two-dimensional plasmonic waveguide
    Barthes, J.
    Francs, G. Colas des
    Bouhelier, A.
    Weeber, J. -C.
    Dereux, A.
    [J]. PHYSICAL REVIEW B, 2011, 84 (07)
  • [10] Coupling of individual quantum emitters to channel plasmons
    Bermudez-Urena, Esteban
    Gonzalez-Ballestero, Carlos
    Geiselmann, Michael
    Marty, Renaud
    Radko, Ilya P.
    Holmgaard, Tobias
    Alaverdyan, Yury
    Moreno, Esteban
    Garcia-Vidal, Francisco J.
    Bozhevolnyi, Sergey I.
    Quidant, Romain
    [J]. NATURE COMMUNICATIONS, 2015, 6