Alternative non-Markovianity measure by divisibility of dynamical maps

被引:98
作者
Hou, S. C. [1 ]
Yi, X. X. [1 ,2 ,3 ]
Yu, S. X. [2 ,3 ,4 ,5 ]
Oh, C. H. [2 ,3 ]
机构
[1] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Natl Univ Singapore, Dept Phys, Singapore 117543, Singapore
[4] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[5] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 06期
基金
新加坡国家研究基金会;
关键词
D O I
10.1103/PhysRevA.83.062115
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By identifying non-Markovianity with nondivisibility, we propose a measure of non-Markovianity for quantum processes. Three examples are presented, and the measure of non-Markovianity is calculated and discussed for these examples. Comparisons with other measures of non-Markovianity are made. The present non-Markovianity measure has the merit that no optimization procedure is required and it is finite for any quantum process, which greatly enhances the practical relevance of the proposed measure.
引用
收藏
页数:6
相关论文
共 23 条
[1]  
Alicki R., 1987, Quantum Dynamical Semigroups and Applications
[2]  
Breuer H.P., 2007, THEORY OPEN QUANTUM, DOI DOI 10.1093/ACPROF:OSO/9780199213900.001.0001
[3]   Non-Markovian generalization of the Lindblad theory of open quantum systems [J].
Breuer, Heinz-Peter .
PHYSICAL REVIEW A, 2007, 75 (02)
[4]   Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems [J].
Breuer, Heinz-Peter ;
Laine, Elsi-Mari ;
Piilo, Jyrki .
PHYSICAL REVIEW LETTERS, 2009, 103 (21)
[5]   Stochastic wave-function method for non-Markovian quantum master equations [J].
Breuer, HP ;
Kappler, B ;
Petruccione, F .
PHYSICAL REVIEW A, 1999, 59 (02) :1633-1643
[6]   The non-Markovian quantum behavior of open systems - An exact Monte Carlo method employing stochastic product states [J].
Breuer, HP .
EUROPEAN PHYSICAL JOURNAL D, 2004, 29 (01) :105-118
[7]   TIME-CONVOLUTIONLESS PROJECTION OPERATOR FORMALISM FOR ELIMINATION OF FAST VARIABLES - APPLICATIONS TO BROWNIAN-MOTION [J].
CHATURVEDI, S ;
SHIBATA, F .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1979, 35 (03) :297-308
[8]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[9]   Non-Markovian Quantum Dynamics: Local versus Nonlocal [J].
Chruscinski, Dariusz ;
Kossakowski, Andrzej .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[10]   THE THEORY OF A GENERAL QUANTUM SYSTEM INTERACTING WITH A LINEAR DISSIPATIVE SYSTEM [J].
FEYNMAN, RP ;
VERNON, FL .
ANNALS OF PHYSICS, 1963, 24 (01) :118-173